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Abstract. In this book we derive (parts of) string theory from
quantum �eld theory in half the dimension and geometry with
cli�ord and group valued coordinates interpreted in terms of half-
densities(Spinors). This gives a glimpse of Grand Uni�ed Theory
as the author understands it. We work in a general mathematical
framework but the bulk of this thesis is in theoretical physics.



The front cover: The sun, a raging inferno of surface temperatures
6000 K, the source of admiration, contemplation and fear since the
beginning of mankind, as illustrated by helio�gurative deities such as
Amon-Re (the , according to myth, supposed to be �rst king of Egypt),
Helios (Greek sungod) and Huitzilopochtli (Aztec god of war and sun).
Despite it's considerable temperatures, it is but a part in the shiver-
ing carcass of the early universe. A large number of it's features are
amenable to modern theoretical physics, inclusive some of it's chaotics.
In the string �eld theoretic perspective of this thesis, it consists of
D3-branes, dual to particles in space-time, creating and annihilating
worlds as particles disintegrate and annihilate in the raging plasma, liv-
ing as subspaces in D = 10 noncommutative stringy space-time. This
has parallels in ancient mythology, e.g in Shiva, who dances worlds to
their destruction and likewise creates them, or Quetzalcoatl, the great
feathered serpent of the Aztecs, who organized the original cosmos and
participated in the creation and destruction of various world periods.
Quetzalcoatl ruled the �fth world cycle and created the humans of that
cycle. The story goes that he descended to Mictlan, the underworld,
and gathered the bones of the human beings of the previous epochs.
Upon his return, he sprinkled his own blood upon these bones and
fashioned thus the humans of the new era. One wonders, somehow,
if the hypothesis in this thesis is more accurate than the thoughts of
these ancient peoples.

The back cover; An eclipse of the sun, already ancient people knew
how to predict these. Today Quantum Field Theory and String Theory
can be used to generate predictions in cosmology and astronomy, such
as e.g. Hawkings area theorem.
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1. A Philosophical Preface

As I began studying quantum theory in early 96 I became more and
more fascinated with the subject. I remember speci�cally walking home
one day with a CD disc when the sun shined abundantly past the roof
of a tall building and was re�ected back from the disc in a straight ray
to the shaded side of the building, leaving a wiggling spot of light as I
continued to walk. What hit my mind then was what a brilliant piece
of physics that was� Fermat's principle just emanating from photons
statistically occurring more often in the line of constructive interfer-
ences in the quantum sum over histories. This principle of extremal
langrangians is one of those that have dominated our view of physics,
indeed many of our old friends like Newton's �rst law or the Hamilton-
Jacobi, Schrodinger, Klein-Gordon, Dirac and Yang-Mills equations are
simple consequences of this search for extremals, may it be at di�erent
level and quantization, and it is a typical example of one of the reasons
for why this thesis was written the way it was; Unity in diversity.
Quite opposite to this search for this unity in diversity are the opin-

ions of those who relish on the extremes, may they be practical, the-
oretical or simply pertaining to one very �xed idea or the other�
exempli�ed by those who believe in the wide spread opinion that quan-
tum gravity is irrelevant to experimental science and hence to physics.
The latter seems to be an example of the very high price we have
paid as a consequence of `just see to that the experimental predictions
are correct'- point of view prevailing in those parts of physics� this
from the perspective of this assumed continuing and engrossing unity.
Physics is a science of concepts, perhaps like mathematics at it's best,
and we- but only probably- need to discern a set of important 'con-
cepts' so that we can achieve this supposed unity. Linked to achieving
this supposed 'unity' is the `why?' question� we believe it to be im-
portant in physics because we think it may be possible to answer; the
structures of reality interact with each other in a, to physical science,
highly interesting manner, probably giving rise to each other simulta-
neously and often in a, to the human mind, exhausting complexity�to
achieve consistency between them is often initially a di�cult matter.
So the `why?' question can be asked and there are some means to make
a (�rst) theoretical check of the answer. This is important to whatever
e�orts we can do in the strive for any unity we might achieve. In the
opposite vein, misuse of the Occam razor, in the don't ask `why?' way,
in part as a consequence of the 'Let's just see to that the experimental
predictions are correct-philosophy' in some parts of physics� mostly
the practical ones and the theoretical subsciences pertaining to them�
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has led to much loss of global comprehension in science. Again negat-
ing but in another circumstance, we are predisposed to think that the
opposite is imperative in the most theoretical part of physics, i.e the
strive for physical interpretation and prediction in string theory etc, for
it deblindes us at our frontier, forcing us to �nd the errors we undoubt-
edly make, and gives us precious intuition on how to proceed from one
point to another. The practical man that does not ask why is cut away
from theory and hence from deductive thought itself in physics, and
the theorist that does not ask how much is cut away from reality and
thus the very essence of physics.
Perhaps a framework that would incorporate the better of what we

have already done, mixing some (theoretical) extremes, would be too
much to hope for, but if there was such a thing we would at least guess it
to be a very good and natural start. That is the credo that motivates
the developments below. A modest credo, or hope, in not only one
hypothesis from one scienti�c culture or scientist being right, but many,
and that the main task of present physics may be to interrelate these
is thus what drives us. Of course the true hope is then that when we
see the interrelations we also see the answers to the questions �Why?�
and �How much?�.
This thesis aims at giving such a framework, an incomplete blueprint

of physics on foundations of noncommutative geometry (both in the
sense of noncommutative coordinates in particular and in the more
general sense of Connes), twistor geometry and string theory. We hope
that it achieves this goal in some sense, leaving it to the reader to
make his own opinion after having read the text. And it does attempt
answers to the questions �Why?� and �How much?�. Actually it does
at least seven or eight experimental predictions out of string theory.
How does it do this? To put it brie�y, it puts together string theory

with noncommutative geometry and twistor, or rather spinor, geometry
and it derives string theory out of �eld theory. D-branes and AdS-
CFT correspondences, in particular the proof of Maldacenas theorem,
are an integral part of this uni�cation, as well as the below explained
notions of N-admissibility and generalized supersymmetry. The string
theory that comes out of �eld theory in this sewing of physics has a
noncommutative space-time, with e.g. U(N) gauge degrees of freedom
and Chan-Paton factors, thus permitting us to directly identify it with
M-theory strings in D = 10, · · · , and we end up in a scenario where
there are no extra dimensions in D = 10 string theory, which is the
critical dimension for the original type II theory.
This critical dimension turns out to interrelate directly to Weyl in-

variance of Yang-Mills and Hilbert-Einstein lagrangeans in D = 4,
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and is what makes possible two other quantizations of gravity other
than the usual string theoretic in D = 10. The four dimensional Eu-
clidean space-times come out hyperkahler as suitable backgrounds in
most cases due to physicality conditions, and this induces related struc-
tures on subspaces in D = 10. As some mere simple examples the
Minkowski property in D = 4 falls as a matter of stability whilst the
spatial sets in D3-branes evolve temporally on the branes in the growth
direction of a harmonic dilaton �eld which de�nes the time after Wick
rotation to the Euclidean region. We can mention, as a simple and
illustrative example of a relation to noncommutative geometry, alge-
braic geometry, and Morse theory, that this evolution can be obtained
via a homomorphism from a C∗-algebra acting on the left of initial
conditions on a space-like slices on the D3-branes, which can also be
described as smooth varieties with the time being smooth deformations
of these varieties and topological �uctuations of the space-like slices to
zeros of the gradient of the dilaton �eld. It ends with a map of physics
and comments illustrating how the parts of physics are supposed to
interrelate to each other, as well as enumerations of the conjectures
necessary.
Some things can be improved in this thesis, including both the con-

ceptual point of view and mathematical style, although the author
has worked on this project from some time now it has really seemed
never-ending, and his originally high ambitions have not been met in
satisfactory way. He has tried to set up some basic guidelines, mostly
rooted in his own philosophical beliefs, and to follow these as much as
possible.
We have tried to achieve highest possible generality in all mathe-

matics done and when doing a mathematical argument to be as simple
and abstract as possible. On the other hand when doing physical argu-
ments we attempt to concrethisize and give examples, spelling things
out rather then letting them being taken for granted. That has con-
tributed to the volume of this thesis. The reader is presupposed to
be at least acquainted with most of modern everyday mathematics of
physics like ( non-real)algebraic, di�erential and general topology, com-
plex and real di�erential geometry through the theory of �bre bundles,
in particular spin geometry, complex and real analysis in one and sev-
eral variables, linear and nonlinear functional analysis, group theory,
advanced PDE theory, algebra and so on. Even though quite a lot of
mathematics background has been included (for a master thesis), both
for sheer beauty and to help the reader get comfortable with the au-
thors conventions, it cannot be expected to account for the enormous
literature in the branches of mathematics relevant to this thesis. We
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also presuppose knowledge of most of the basics of modern theoretical
physics, at least up to and inclusive quantum �eld theory and non-
abelian gauge �elds but hopefully a little bit more. Some knowledge in
string theory is helpful but not necessary. The �rst book of J.Polchinski
and the lecture notes of E.D'Hoker from the 1996-1997 year at the In-
stitute for Advanced Study should su�ce more than abundantly.
As we touch the work of many others when we �nally reach our

objective of putting together physics, we have chosen to , out of respect
of e.g. the many string theorists that have been dealing with string
theory without necessarily realizing that it is the inevitable consequence
of �eld theory, we have decided to deal with this by simply referring to
such sources when they were known to us, to maintain and emphasize
other authors work, as well as saving us from increased work labor. It
is not without courage that a generation of string theorists developed
string theory, and the author, having seen how his uni�cation was
greeted in Stockholm, feels only stronger and more compassionate in
the cause of protecting the interests of those few individuals who dared
propose string theory and have maintained struggle since then.
I apologize in advance for my shortcomings. This is a work written

by a young theorist for mathematicans and physicists alike, and as such
it su�ers from some inevitable compromises. My age, knowledge, and
time simply did not su�ce for more. However, the perfect obviously
exists but as an illusion, so perhaps this sketch of physics will, within
obvious limitations, do.
But �rstly; Our gratitude to our teacher and supervisor J. Mick-

elsson, who has been with us from the very beginning of our under-
graduate time� and a little bit before� at the Royal Institute of
Technology, Stockholm, Sweden, and B.S. DeWitt, whom we asked to
comment this galactic size and non-trivial material on gravity, this in
view of his unique experience in gravity, which is probably unsurpassed
in generality. His support at a critical moment of this project enabled
it's completion.
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�Omnibus ex nihil duscendis su�cit unum.�
G.W. VON LEIBNIZ, 1646-1716.

�All beginnings are obscure. Inasmuch as the mathematician operates
with his conceptions along strict and formal lines, he, above all, must
be reminded from time to time that the origins of things lie in greater

depths than those to which his methods enable him to descend.
Beyond the knowledge gained from the indivdual sciences, there

remains the task of comprehending. In spite of the fact that the views
of philosophy sway from one system to another, we cannot dispense
with it unless we are to convert knowledge into a meaningless chaos.�

H. Weyl, Space, time, Matter, 1918.

�... there are �mystics�, among whom I count myself, who hope for a
synthesis which embraces aspects of all the rival theories. As a

mathematician I would �nd it a pity if God had not found some use
for all the beautiful ideas that have been put forward.

Clues, indicating that such a synthesis is not totally hopeless, include
the key role of integrable systems, solitons, duality, holomorphic

geometry and supersymmetry.�
Sir Michael Atiyah, 1998.
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1.1. Organization. This theoretical( mathematical) physics thesis is
subdivided into 4 parts. Firstly comes one mathematical part on non-
commutative mathematics in �nite and in�nite dimension. Then comes
Part II, which concernes itself with the origins and foundations of
gravity. In Part II we totally let go on any requirements of rigor or
suchlike, as we undertake one of the most di�cult tasks that can be
undertaken�a bare handed quantization of gravity out of no founda-
tions at all�except for elementary quantum �eld theory/mechanics
and general relativity. Throughout Part II we strive consciously to-
wards string theory, noncommutative geometry, and twistor geometry,
and the aim is to derive enough intuition to derive these concepts out
of �eld theory. In Part III we use some rigor again, and this time we
try to make checks, describe phenomenology and if possibly make clear
statements of exactly which our hypothesis are after that the dust of
Part II has settled to some extent. Finally in Part IV we mention some
more or less interrelating ideas that did not �t into the main body
and �nish o� with mind maps and diagrams of physics and the various
conjectures.
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E. B. Torbrand

Abstract. In this paper we �rstly extensively survey some hyper-
complex methods that �nd use in gravity. After this we brie�y ap-
ply this to computations and conjectures in gravity and also make a
generalized Hypercomplex Maldacena Conjecture. The mass spec-
trum of states is computed for the simplest case for D3-branes.

1. Introduction to Hypermathematics

Hyperanalysis is the science that deals with non-real analysis from
an intrinsic point of view, and it' historical foundations rest on com-
plex analysis in one and several variables, Lie analysis, Cli�ord analysis
and hypercomplex dittos. The work of Riemann on complex function
theory and the discoveries of Cayley, Hamilton, Cli�ord and Lie set up,
provided one is willing to take a point of view that is general enough, a
commond ground for examining the analysis of spaces of objects with
some speci�ed structures. As much as geometry and topology involve
global questions hyperanalysis also does, and following the usual con-
vention of mathematics, we shall commence with local studies and then
extend to global cases. Thus, in a sense, we shall �rst be examining
the local analysis of objects in some certain structural categories and
then move on to the whole objects. The �nal step of this globaliza-
tion shall be to regard an entire structural category, and this might
be called �quantum� or �statistical� hypergeometry. It is �quantum�
hypergeometry� In which we shall later naturally associate the objects
to D-branes �that is the driving reason for mathematical escapades
in this thesis, and in order to understand it we must �rst have a local
understanding of structural categories and manifolds.
It is common in hyperanalysis that some things are valid for large

spaces of structural categories, but also that the individual structural
categories and structural objects have speci�c phenomenology. We
shall be concentrating a little bit on the generalities, and try to spot
them in speci�c examples.
Hyperanalysis in one variable has been to some part previously in-

vestigated in science and of these developments not all have been acces-
sible, rigorous and intrinsic, however there are some books that touch
these topics. The well known parts of hyperanalysis are complex anal-
ysis and in some extent several complex variables. In one complex
variable the books by L.Ahlfors, H.Cartan and R.Remmert can be rec-
ommended. In several complex variables the books by Hormander,
Krantz and Gunning can also be recommended. As for noncommuta-
tive examples there does not seem much mentionable in book format,



however Manin's book on complex geometry/gauge �eld theory con-
tains some such material and I believe that Riesz has written a book
in Cli�ord analysis-a book that I unfortunately have not been able to
get hold of. As for the rest the reader is referred to Fueter's work from
the 30's and a review article by Dunford from the 70's. Hyperanalysis
is thus in some sense a dormant �eld; indeed it might be too large a
�eld for us ever to cope with.
The simplest example of hyperanalysis in several variables is several

complex variables-pluricomplex analysis- and this simplest commuta-
tive example is known to be quite non-trivial at times. Perhaps it
is wise to understand that a tree can have many leaves yet each leaf
be very individual. Thus in respecting the individuality allowed by
generality we commence our exposition.
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2. Pluricomplex Analysis

2.1. Introduction to Several Variables. The general theory of sev-
eral complex variables was formulated considerably later than the one
dimensional counterpart. Some of the fundamental facts were elab-
orated by K.Weierstass in the late nineteenth century but otherwise
the �eld laid mostly dormant until the shift of the century when some
problems, for example the problem of extension of holomorphisms from
the boundary of the unit ball throughout the ball was solved in the af-
�rmative by Hartogs and Poincare in 1903-1906 and an investigation
of the problems now known as the th 1:st and 2:d Cousin problems was
undertaken by Cousin. By then some of the di�erences between sev-
eral variables and the one variable case became apparent, such as the
nonexistence of biholomorphisms from the unit ball to the polydisc in
Cn, n > 2, contrary to the one variable case which essentially reduces
the question of biholomorphic equivalence to topological equivalence
by the Riemann mapping theorem. Work by Bergman and others,
such as the famous Bergman kernel giving an integral representation
on the unit ball and the Martinelli-Bochner formula, giving an integral
representation on arbitrary domains, gradually evolved into the more
function theory like of one variable aspects of several variables1. But
it is in no way to be believed that those were the only developments,
indeed the work which has set its most indistinguishable mark is the
non function theoretic. This tradition in several variables got its seeds
from the work of K.Oka who systematically solved problems with some
brilliant new ideas based on work by the genius H.Cartan, who real-
ized the scope of Oka's work and laid the foundations of concepts like
sheaf theory together with it's father Leray. Today work by Grauert,
Remmert, Leray, Dolbeault and many others has continued to enrich
this active �eld of mathematical research.
The aim of the present section is to introduce the reader to the basics

of several complex variables. Prerequisites are almost none, and indeed
arguments are kept extremely simple, withstanding the surge for use
of advanced analytical, geometric or topological methods, with some
exceptions like an explicit use of the calculus of forms and elementary
homological calculus. The presentation is made as close to the one

1The latter formula has a non-holomorphic kernel and this can be annoying. The
author is presently considering a new integral representation which is valid without
modi�cations on arbitrary domains in Cn and does not su�er from this drawback.
His integral representation also renders the result by Narasimhan concerning con-
tinuation of meromorphisms throughout the ball trivial. A version is reviewed later
in this thesis.
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variable case as possible in order not to scare away the student in
(probably) his/hers �rst confrontation with this beautiful theory.
So why study several complex variables? Mathematically the an-

swer is selfevident-simply for fun. However there are more reasons- it
turns out that a lot of questions are linked to several variables the-
ory and can be successfully resolved within the framework provided,
the vast usefulness charecterizing the one variable theory can often be
percepted with equal or greater force in this larger framework. It is
not probable that anyone with an applied interest will ever read this
essay, however the use of several variables in practical applications can
be made immense. Some examples - Classical dynamical systems can
be treated as hamiltonian manifolds which can, modulo integrability,
be attacked as complex manifolds (actually Kahler!)and the state of a
C.D system can be obtained by exponentiation on a holomorphic vec-
tor bundle(See Bishop and Goldberg or Novikov et al [7]) - Penrose
twistor theory with applications to P.D.E's and gravity - P-branes &
string theory (TeichmÃ1

4
ller spaces,moduli spaces ,Hodge theory and

what not)-quantum �eld theory(Euclidinization(i.e in practice often a
Wick rotation) and the then needed analytic continuations, evalua-
tion of integrals,etc) - Reformulating di�erential equations as Cauchy
Riemann equations - Projective embeddings of all kinds of stu� that
people want to embedd, like varieties(One of the basic tools here be-
ing the Kodaira embedding theorem) and in string compacti�cation
purposes.

2.2. The Basic Facts. Let D, Ω be compact subsets of Cn if not
otherwise stated and reserve the letter α ∈ Zn to denote a tuple in
multi-index notation, with|α| = |α1| + |α2| + · · · where we also re-
serve n, pronounced n, to mean the tuple (1, 1, 1, ...). Call a function
f analytic on Ω if it is described locally on a neighbourhood of Ω by
the power series expansion f(ζ) =

∑∞
|α|=0 a(α)(ζ − z)α, where we use

the standard metric topology on Cn given by the euclidean distance
function d(ζ, z) = ||ζ − z|| =

√∑n
i=1 |ζi − zi|2. We denote the set of

analytic functions on Ω by O(Ω) and for starters we will di�er between
holomorphisms on Ω, which we de�ne to be the set of smooth func-
tions satisfying ∂̄f = 0 on Ω ,and analytic functions on Ω, ∂̄ being the
Dolbeault operator de�ned pointwise on C∞(Ω) by ∂̄f = ∂f

∂ζ̄σ
dζ̄σ. The

topology of O(Ω) is de�ned to be the one generated by the supremum
norm on compact subsets of Ω. Now since the set of holomorphic and
antiholomorphic coordinates in Cn are orthogonal and describe Cn just
as well as any other coordinate choice we note the split d = ∂+∂̄, where
∂f = ∂f

∂ζσ
dζσ again acting pointwise on F(Ω) ≡ C∞(Ω), d being just
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the ordinary exterior derivative,(if you do not know what an exterior
derivative is, just think of it as the di�erential operator). We denote
by Λ(Cn) ≡ Γ(Cn,ΛT ∗Cn) the space of smooth functions(sections)
ω : Cn → ΛT ∗Cn, where ΛT ∗Cn denotes the space of totally antisym-
metric covariant tensors in Cn, which are naturally generted by dζi
and dζ̄i. Such a function(also named section) is called a form. We use
a special symbol, called a wedge,to denote the totally antisymmetric
product between two tensors in ΛT ∗Cn. To clarify things we take some
examples;

Example 2.1. Fix n ≥ 4 in this example. dζ1∧dζ2∧dζ̄3∧dζ3 ∈ ΛT ∗Cn

and if we expand we have dζ1∧dζ2∧dζ̄3∧dζ3 = dζ1⊗dζ2⊗dζ̄3⊗dζ3−
dζ2⊗dζ1⊗dζ̄3⊗dζ3 +∀ other antisymmetric permutations, similarly
dζ1 ∧ dζ2 = dζ1 ⊗ dζ2 − dζ2 ⊗ dζ1. (cosh(ζ1ζ2 + 2i) + ζ4)dζ1 ∧ dζ2 is a
function taking values in ΛT ∗Cn.

We remember from elementary multivariable calculus Gauss and
Stokes theorem. Their natural generalization is contained in the above
machinery, for let us de�ne

∫
M
ω =

∫
M
f(x)dx1dx2 · · · dxn where ω =

f(x)dx1 ∧ dx2 ∧ · · · dxn, ω ∈ Λ(M), M being some smooth mani-
fold. If you do not know what a manifold is, just think of it as a
compact subset of Cn which is locally homeomorphic to some lower
dimensional space Rj, 0 ≤ j ≤ 2n − 1, this will be correct in some
sense as long as you are dealing with compact manifolds (Whitney's
theorem). Stokes theorem states then

∫
∂M

ω =
∫
M
dω, ∂ being the

boundary operator. Elementary analysis, for example the Riesz repre-
sentation theorem or the Radon-Nikodym theorem, states a pattern of
peculiar relationship of duality between sets and functions via integrals
under some circumstances. Let us in the spirit of those lines of reason-
ing de�ne a 'product' 〈 , 〉 : Cn(Cn,C)×Cn(Cn,C)→ C where we set
Cn(Cn,C) ≡ Λn(Cn) ≡ Λ(Cn)|forms of order n, and call the elements in
that space cochains, the corresponding sets in Cn(Cn,C) we integrate
over are then called chains.2

Excercise 2.1. Familiarize yourself with this 'product'.

Note that in the above 'product' form we have have d† = ∂, † denot-
ing adjoint and that the boundary of a boundary is nill, hence d2 = 0
thus the Dolbeault split of the exterior derivative gives ∂2 = ∂̄2 =

2 The reader should not believe that duality between these two spaces is always the
case, nor take the proof of such a matter lightly. However, such an assertion can be
proved under some circumstances, most notably compactness of the manifold considered.

In positive cases this implies deRham's theorem
ker(d|Cn(M,C))

Ran(d|
Cn−1(M,C))

∼=
ker(∂|Cn(M,C))

Ran(∂|Cn+1(M,C))
.
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∂∂̄ + ∂̄∂ = 0 when identifying terms in di�erent

Λ(p,q) ≡ Λ|p holomorphic and q antiholomorphic indices.
Graded Leibnitz rules hold for both the exterior derivative and the
boundary operator, namley d(ω ∧ η) = dω ∧ η + (−1)pω ∧ dη, ω ∈
Cp, η ∈ Cq and ∂(ω ∧ η) = ∂ω ∧ η + (−1)pω ∧ ∂η ω ∈ Cp, η ∈ Cq and
we also have ω ∧ η − (−1)pqη ∧ ω = ω ∧ ω = 0. We de�ne Zp(X,R) =
Zp(X) = ker(d|Λp), Zq,p

∂̄
(X,C) = Zq,p

∂̄
(X) = ker(∂̄|Λq,p), Bp(X,R) =

Bp(X) = Ran(d|Λp−1), Bq,p

∂̄
(X,C) = Bq,p

∂̄
(X) = Ran(∂̄|Λq,p−1) 3 and

call these sets (Dolbeault)cocycle group and (Dolbeault)coboundary
group. We are now �nally in a postion to start our �eld trip.

Lemma 2.1 (Abel's lemma). Assume a(α) ∈ Cn is given for α ∈ Nn,
and for some ζ ∈ Cn we have sup |aαζα| = M <∞; Then falls

∞∑
|α|=0

a(α)ζ
α <∞

in the polydisc de�ned by P (0, r) = B(0, |ζ1|)×B(0, |ζ2|) · · ·×B(0, |ζn|) =
B(0, |ζ|)n, convergence being normal.

Proof. Pick λ ∈ (0, 1) and K ⊂ B(0, λ|ζ|)n. Note |aαzα| = |aαζα|λ|α|,
z = λζ. Thus

|aαzα| ≤ |aαζα|λ|α| ≤Mλ|α|, ∀α ∈ Nn, z ∈ K
Since

∑
α∈Nn λ|α| = (

∑∞
i=o λ

i)n <∞, the result follows. �
4

Corollary 2.1.
O(Ω) ⊂ H(Ω)

Proof.

∂̄f = ∂̄
∑
α∈Nn

aα(ζ − z)α =
∑
α∈Nn

∂̄aα(ζ − z)α =
∑

0 = 0, ζ ∈ B(z, r)n

3When a �eld is an argument in any of these symbols it simply denotes what
�eld the (vector)space in question is de�ned over.

4 Remember that in a footnote on previous pages we spoke of a group named the
deRham cohomology, if that group is trivial, you can always inverte d modulo the numer-
ator of the quotient. One de�nes Zn ≡ ker(d|Cn(M,C)), calling the elements in that set
cocycles, similarly Bn ≡ Ran(d|Cn−1(M,C)) are called coboundaries. Thus if one is lucky

one may get a cocycle to integrate and hence ∂2 = 0 implies under trivial cohomology
that one may look at the integration domain modulo cycles. This is actually precisley
what happens when we speak of conservative �elds in physics. There is another kind of
Cohomology, called Dolbeault cohomology which is basically the same construction except
the conjugate Dolbeault operator replaces the exterior derivative.
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5 follows using the previous corollary and noting that uniform conver-
gence of the di�erentiated partial sum most de�nitely is at hand. �

We sometimes set a little symbol as an index to the space we are
considering to �x the symbols for the coordinates used, for example Cn

ζ

denoting Cn with {ζ} as coordinates.

Theorem 2.1 (General Cauchy integral formula on Riemann surfaces).

f(z) =
1

2πi
{
∫
∂Ω

ω

ζ − z
−
∫

Ω

∂̄ω

ζ − z
} z ∈ Ω, ω = f(ζ, ζ̄)dζ ∈ Λ(1,0)(Cζ)

Proof. By compactness Ω has a �nite cover. For simplicity let us con-
sider the case when Ω is simply connected and connected. Then, letting
Dz,R denote a disc around z of radius R, we have

〈∂Ω, ω
ζ−z 〉 = 〈∂Ω ∼ Dz,R,

ω
ζ−z 〉+ 〈∂Dz,R,

ω
ζ−z 〉

= 〈Ω ∼ Dz,R, d
ω
ζ−z 〉+ 〈∂Dz,R,

ω
ζ−z 〉

= limR→0〈Ω ∼ Dz,R,
∂̄ω
ζ−z 〉+ limR→0〈∂Dz,R,

ω
ζ−z 〉

=
∫
ω

∂̄ω
ζ−z + limR→0

∫ 2π

0
f(ζ,ζ̄)
Reıθ dRe

ıθ

=
∫
ω

∂̄ω
ζ−z + 2πif(z)

and thus by linearity of 〈 , 〉 in the �rst argument under disjoint unions
the assertion falls on arbitrary 2-chains Ω ∈ C. �

Corollary 2.2 (Cauchy's Main Theorem).

f(z) =
1

2πi

∫
∂Ω

ω

ζ − z
, z ∈ Ω, ω ∈ Z(1,0)

∂̄
(C,C)

Proof.

ω ∈ ker(∂̄)

�

Corollary 2.3 (The Polydisc Cauchy Main Theorem). Assume ω ∈
Λ(n,0)(Ωn

ζ )
Ωn = Ω1 × Ω2 × · · ·Ωn, ω = fdζn ≡ f

∧n
i=1 dζ, f ∈ H(Ωn). Then

f(z) =
1

(2πi)n

∫
∂Ωn

ω

(ζ − z)n
, z ∈ Ωn

5 Since the previous corollary states quite nice properties in the local representations
we are studying we will use = rather than ∼, and will have to live with the small inade-
quacy. Later we will prove uniqueness of this expansion thus fully justifying the use of an
equivalence in the sense of a transitive, re�exive and symmetric relation.
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Proof. By ∂̄f = 0 it falls that f satis�es a Cauchy-Riemann condition
in each variable separatly. Thus by∫

∂Ωn

ω

(ζ − z)n
=

∫
∂Ω1

dζ1
(ζ1 − z1)

∫
∂Ω2

dζ2
(ζ2 − z2)

· · ·
∫
∂Ωn

dζn
(ζn − zn)

f(ζ)

it su�ces by the previous corollary to show that iterated integration
holds. By compactness of Ωn and continuity on the same the Lebeque
criterion for Riemann integrability holds, hence Lebesgue integrabil-
ity. The Lebesgue measure being complete the Fubini theorem now
holds(See Royden[5]), and so we assert the corollary. �

Excercise 2.2. Di�erentiate under the integral sign and formulate a
residue theorem on Ωn ⊂ Cn. What form must the quotient analytic
set g = 0, where we are considering f

g
, g, f ∈ H(Ωn) as an integrand

have for you to be able to use this theorem? Examine g = ζ2
1 + ζ2

2 + ζ2
3 ,

1 + ζ1 + ζ2 + ζ3 + ζ1ζ2 + ζ1ζ3 + ζ2ζ3 + ζ1ζ2ζ3 and cos(ζ1 + 3i)- try
to think about how the applicability dependens of dimensionality and
numerator. The residue you have obtained is called the Cauchy residue,
and is a special case of a more general residue called the Grothendieck
residue(See Dolbeault[6] ).

Excercise 2.3. Evaluate∫
R3

cos(
√
x+ y + z)dxdydz

(x2 + 1)(y2 + 1)(z2 + 1)
6

We de�ne the locus z of a singularity to be the point speci�ed by the
denominator factorization (ζ − z)α, and α to be the order of the locus.
If this α =∞ we say that we have an essential singularity at z.7

Theorem 2.2 (Polydisc Laurent Theorem). Assume f to be holomor-
phic on the polyannulus de�ned by

(B(z, R) ∼ B(z, r))n, r < R. Then

f(ζ) =
∞∑

α=−∞

a(α)(ζ − z)α ζ ∈ (B(z, R) ∼ B(z, r))n, r < R.

convergence being normal and unique.

6 Answer:π3cos(1)

e2
7This is in no way su�cient to describe singularities in several variables. Rather

the situation is highly interesting, leading to many twists and turns. See Chirka[6].
The reason for this de�nition is that we are always able to use the W. preparation
theorem (See section 4) locally when �xing all coordinates but one.
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Proof. Thus assume for simplicity z = 0, and set Ωi to be a ε-parted
annulus, letting all contours be positive, and de�ning the chains Cα =
χNn(α)Cε

2 − χZ−n(α)Cε
1,

f(z) = 1
(2πi)n

∫
∂Ωn

ω
(ζ−z)n , z ∈ Ωn

= 1
(2πi)n (

∫
Cε

1
+
∫
Cε

2
n) ω

(ζ−z)n +O(ε)

= ε→ 0 = 1
(2πi)n

∫
C0

1
n

ω(−1)n

(z(1−ζ/z))n + 1
(2πi)n

∫
C0

2
n

ω
(ζ(1−z/ζ))n

= 1
(2πi)n

∫
C0

1
n

(
P

α∈Nn ( ζ
z
)α)ω(−1)n

zn + 1
(2πi)n

∫
C0

2
n

(
P

α∈Nn ( z
ζ
)α)ω

ζn

=
∑

α∈Nn( 1
(2πi)n

∫
C0

1
n

(( ζ
z
)α)ω(−1)n

zn + 1
(2πi)n

∫
C0

2
n

(( z
ζ
)α)ω

ζn )

=
∑

α∈−Nn( 1
(2πi)n

∫
(−C0

1 )
n
ω
ζα )zα−n +

∑
α∈Nn( 1

(2πi)n

∫
C0

2
n

ω
ζα+n )zα

= (
∑

α∈Zn
−

+
∑

α∈Nn)( 1
(2πi)n

∫
Cα

n
ω

ζα+n )zα

=
∑

α∈Zn (
1

(2πi)n

∫
Cα

n

ω

ζα+n
)︸ ︷︷ ︸

a(α)

zα

=
∑

α∈Zn a(α)z
α

where the exchange of summation and integration ( a sum is an integral
under the counting measure) holds from the Fubini theorem (See Roy-
den[5]) by integrability(Summability) of the function considered and
completeness of both the Lebesgue and counting measure. Uniqueness
is obvious, and applying the previous theorem on geometrical series
normality follows. �

Corollary 2.4 (Polydisc Taylor theorem). Assume f to be holomorphic
on N(z) ⊂ Cn. Then on the largest polydisc B(z, r)n ⊂ N(z)

f(ζ) =
∞∑

|α|=0

a(α)(ζ − z)α, ζ ∈ B(z, r))n

convergence being normal and unique. 8

Proof. Since f is a holomorphism in each variable all a(α);ασ < 0 vanish,
thus the corollary falls in view of the above statement by noting the
formula given for the Laurent series coe�cients. �

Theorem 2.3 ( Generalized Vitali Theorem). The natural restric-
tion homomorphism r : O(B(0, 1)n) → O(Ωn) has compact action for
Ωn ⊂⊂ B(0, 1) ⊂ Cn

ζ .

Proof. Note that since we are dealing with a holomorphism on the ball
we have a taylor series expansion available throughout it, thus

8i.e in some sense O(Ω) = H(Ω).
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|f(z)− f(z′)| = 1
(2π)n |

∫
∂Ωn

f(ζ)
(ζ−z)n − f(ζ)

(ζ−z′)n |
= 1

(2π)n |
∫
∂Ωn

f(ζ)
(ζ−z)n − f(ζ)

(ζ−z′)n |
≤ 1

(2π)nµ(∂Ωn) supζ∈∂Ωn | f(ζ)
(ζ−z)n − f(ζ)

(ζ−z′)k |
≤ 1

(2π)nµ(∂Ωk) sup |
∑

α∈Nn
f(ζ)(zα−z′α)

ζα+1 |
≤ 1

(2π)nµ(∂Ωn) sup | f(ζ)
ζα+1 ||

∑
α∈Nn(zα − z′α)|

≤M ||z − z′||
for some M ∈ R+ for close enough z, z′ 9. Thus noting to each δ > 0
there is a ε de�ned by δ = ε

M
satisfying

|f(z)− f(z′)| < ε ∀z, z′; ||zi − z′i|| < δ

we have uniformly continuous f . Now Ωi is compact, thus Ωn is
compact. Let F ⊂ O(B(0, 1)n) be bounded, then the M in the above
inequalities can be chosen to be valid over the entire family since it
only depends on diam(F) for a �xed Ωn ⊂⊂ B(0, 1), but then we
have a bounded equicontinuous family of functions F, the Ascoli-Arzela
theorem (See Royden[5]) now asserts that the range of restriction is a
normal family of functions. �

Corollary 2.5. The natural restriction r : O(O) → O(K) is compact
for compact K ⊂⊂ O, O open in Cn.

Proof. Since the topology we are considering is equally well generated
by balls or polydiscs and we are dealing with a topological matter the
assertion has to fall. �

Theorem 2.4. There are no biholomorphisms from the polydisc to the
unit ball in Cn, n ≥ 2

Proof. For simplicity we will assume that that this assumed biholomor-
phism f extends holomorphically to the boundary. On the boundary it
would be necessary that ||f(ζ)||2 = f(ζ) † f(ζ) = 1. Let qn be �xed
and situated on the boundary of ∂Ωn for q = (q1, q2, · · · , qn−1, qn). It is
seen that (N(q) ∼ q) ∩ (Cn ∼ ∂Ωn) 6= ∅ ∀N(q), Ωσ open, hence q is in
the topological boundary of this polydisc. A biholomorphism is among
other things a homeomorphism mapping boundaries to boundaries, but
then individual coordinate ζρ, ρ 6= n might be used on a subset of the
boundary for n > 1. Hence follows 0 =

∑
σ ∂ρ∂̄ρfσf̄σ =

∑
σ |(∂ρfσ)|2 ⇒

0 = |∂ρfσ|2. Thus ∂ρfσ = 0 and since the derivative of a holomorphism
is again a holomorphism the maximum modulus principle yields that

9We are assuming implicitly that the origin is not on the boundary of the polydisc
considered.
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this derivative is a map attaining the value 0 throughout the polydisc
when considering components of it. Reordering components this will
hold in every component ρ, thus f is singular, contradicting the bijective
property of a biholomorphism. �

To get a little bit of fresh air we introduce the Bergman formula

f(z) = (n−1)!
(2πi)n

∫
∂B(0,1)Cn=Sn

C

f(ζ)ω′(ζ̄)∧ω(ζ)
(1−ζ†z)n ,

ω(η) = dηn

ω′(η) =
∑n

k=1 (−1)k−1ηkdη1 ∧ · · · ˆdηk · · · ∧ dηn
and say goodbye to n.10

Theorem 2.5 (Hartogs 1906). Assume f ∈ O(B(0, 1+ε)Cn ∼ B(0, 1−
ε)Cn), 1 > ε > 0. Then f has a unique holomorphic continuation
throughout the ball.

Proof. Thus use the Bergman formula and obtain

f(z) =
(n− 1)!

(2πi)n

∫
∂B(0,1)Cn=Sn

C

f(ζ)ω′(ζ̄) ∧ ω(ζ)

(1− ζ†z)n

clearly being unique(which is seen by for example subtracting another
di�erent function g from f which is obtained from the bove integral),
de�ned throughout the ball and(Di�erentiation under the integral sign
being permitted by the standard theorems of calculus.) by

∂̄|Cn
z
f(z) =

∂̄|Cn
z
(n−1)!

(2πi)n

∫
∂B(0,1)Cn=Sn

C

f(ζ)ω′(ζ̄)∧ω(ζ)
(1−ζ†z)n

= (n−1)!
(2πi)n

∫
∂B(0,1)Cn=Sn

C
∂̄|Cn

z

f(ζ)ω′(ζ̄)∧ω(ζ)
(1−ζ†z)n = 0

a holomorphism. �

We denote byH(X, Y ) = O(X, Y ) the set of holomorphisms from the
complex manifoldX to the complex manifold Y . A holomorphism from
one complex manifold to another complex manifold is a smooth map
for which the local coordinate components fσ satisfy Cauchy-Riemann
conditions ∂̄fσ = 0, 1 ≤ σ ≤ n, n = dimC(X) on each chart. The
following theorems will treat some topological properties of holomor-
phisms.11

Theorem 2.6 ( Generalized Liouville Theorem I). Assume

f ∈ H(X, Y )

10Puih!-I use a much better symbol in private, but hey- that's what Latex had
to o�er.

11Please note that a manifold cannot have a boundary, this is important when
considering the following theorems.
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for X a compact manifold. Then f is either surjective or singular.

Proof. Since X is compact f(X) is compact hence closed. A nonsin-
gular holomorphism is an open map hence f(X) is open since X is in
the topology of X. But then f(X) is open,closed and non-empty, the
only set in Y with such a property is Y itself. �

Corollary 2.6 ( Generalized Liouville Theorem II). Assume f ∈ H(X, Y ),
X compact, Y non-compact. Then f is a constant.

Proof. Since f(X) is compact and Y is not f cannot be surjective,
hence the corollary falls in view of the above statement. �

Theorem 2.7. Assume that f ∈ H(X, Y ), X a compact manifold.
Then f is a biholomorphism IFF f is injective.

Proof. Since f is injective f is non-singular hence surjective. f is obvi-
ously continuous, hence it now su�ces to note that every closed subset
K in the compact X is again compact and so f(K) is compact hence
closed and so f is closed as map. These properites combined yield that
f is a biholomorphism.

�

Example 2.2. Here comes an application of several complex variables.

Theorem 2.8 (On Solutions to the Laplace Equation.). 12 LetM ⊂ X,
X a complex manifold of dimension n and M a manifold with bound-
ary. Assume further M to be biholomorphically equivalent to a set with
boundary given by

D = {ζ ∈ Cn
ζ
∼= R2n|Im(ζn) = 0}.

Then �φ = 0 with φ|∂M ≡ B1 and dcφ|∂M ≡ B2 for φ real given, dc
denoting codimensional exterior derivative, has a unique solution given
by

φ =
Φ + Φ̄

2
+

∫ ζ
ζ̄
dcΦ

2i
where � =

∑
1≤σ≤2n ∂

2
σ and Φ is the codimensional continuation of φ

from D to Cn
ζ , where φ = Re(Φ). 13

12Note that the powers of algebra and analytic continuation permit us to reduce
the massless Dirac and Klein-Gordon(i.e d'Alemberts equation in the K.-G. case) to
the treated case. Please also note that the inhomogeneous equations are essentially
only a question of shifting boundary values.

13Note the elementary relation v =
∫
∗du for f = u+iv, f ∈ O(C),* being Hodge

star.
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Proof. Note that ker(∂∂̄) is invariant under biholomorphisms. Also
Φ+Φ̄

2
∈ (O+ +O−)(Cn) = ker(∂∂̄). We note

R ζ

ζ̄
dcΦ

2i
|∂M = Im(Φ|∂M) = 0

since φ was real and so B1 holds.

dc
Φ + Φ̄

2
+
dc
∫ ζ
ζ̄
dcΦ

2i
= o+ Im(idcφ) = dcφ

follows from noting that dφ(x+it)
dt
|t=0 = φ′i, since then a in�netisimal

change of value of φ in codimensional direction relative to D has to be
imaginary implying dcΦ+Φ̄

2
|∂M = Re(dcφ)|∂M = 0 and

dc
R ζ

ζ̄
dcΦ

2i
|∂M =

dc
R ζ
0 dcΦ+dc

R 0
ζ̄ dcΦ

2i
|∂M = dcφ(x+it)i+dcφ(x−it)i

2i
|t=0 = dcφ

thus also B2 is true.Uniqueness now follows from the standard theorems
of PDE's. �

Excercise 2.4. Find the Taylor series expansions of g1 = cosh(ζ1ζ2 +
3i), g2 = 1

ζ1ζ2−2iζ2−3ζ1+6i
around (1+ i, 1) and (1, 0) in C2. Is it possible

to �nd a Taylor series expansion for g2 at (2i, 3)? Can you �nd a point
z ∈ C2 such that there is no expansion for g2 in any neighboorhood
of that point? What if you consider the one point compacti�cation

C2 ∪∞ = Ĉ2, how many points are omitted by g1 ?
When doing these problems it might be worth remembering that 1

(ζ−z)n =∑σ=∞
|σ|=0

(z−w)σ

(ζ−w)σ+n , however you will have to �nd the convergence polydisc

on your own!
14

2.3. Power Series of Several Complex Variables. In this short
section we shall look into the properties of power series - mostly where
they converge and a special kind of set called Reinhardt domain. De�ne
a Reinhardt domain to be an open set Ω such that ζ ∈ Ω implies
(eiθ1ζ1, e

iθ2ζ2, · · · , eiθnζn) ∈ Ω, θi ∈ [0, 2π). One says that a set
D ∈ R2n ∼= Cn is logarithmically convex if log τ(D) ≡ {ξ ∈ Rn : ξ =
(log |z1|, log |z2|, · · · , log |zn|), z ∈ D} is convex. We have

Lemma 2.2. The convergence domain of power series
∑

α∈Nn aαz
α is

logarithmically convex.

Proof. Assume ξ and η are points in logτ(D) then we are to show
tξ + (1− t) η ∈ logτ(D). Choose p, q ∈ D ,λ ∈ (0, 1) for t ∈ (0, 1). By
convergence at λp and λq we have ∃M ;

|aν |λ|ν||pν | ≤M, |aν |λ|ν||qν | ≤M, M < ∞
14By now the reader has seen more than one example of a singularity, and prob-

ably correctly realized that they are extended objects in Cn, n ≥ 2.
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∀ν ∈ Nn. It follows
|aν |λ|ν||pν |t|qν |1−t ≤M

and thus by Abel's lemma we have convergence in a neighbourhood of
at = (|p1|t|q1|1−t, |p2|t|q2|1−t, · · · , |pn|t|qn|1−t) ∈ D, i.e tξ + (1 − t)η ∈
logτ(D). �

Lemma 2.3. Let D be Reinhardt. If D is logarithmically convex, then
D is convex with respect to monomials in the coordinates zi.

Proof. We must prove that the hull 15 of every compact set K contained
in D is strictly contained in D. By compactness of K̂ it su�ces to
prove K̂ ∩ ∂M = ∅. Since K has a �nite cover Q of polydiscs Qi it
su�ces to prove that Q̂ ∩ ∂M = ∅. Let p ∈ ∂D with all components
nonzero. Then p∗ ≡ log|p| ∈ ∂logτ(D) and thus by convexity ∃ a
linear L(ξ) =

∑n
j=1 µiξi, µi ∈ R+ satisfying L(ξ) < L(p∗), ξ ∈ logτ(D).

Let Q∗ be the �nite set of points in logτ(D) which corresponds to the
polycentres in Q = {Qi}. One can �nd rational α > µ > 0 su�cently
close to µi such that for L̃(ξ) =

∑n
j=1 αiξi one has L̃(ξ) < L̃(p∗), ξ ∈ Q∗.

The above equation has to be true after multiplication with the positve
common denominator of α1, · · · , αn, so we may assume αi ∈ Zn

+. Then
the monomial mα(z) = zα satis�es |mα||Q < |mα(p)| i.e p /∈ Q̂. For any
remaining points p ∈ ∂D we can always reorder the coordinates so that
for some 1 ≤ l < n one has p1p2 · · · pl 6= 0 while pl+1 = · · · = pn = 0.
If πl : Cn → Cl is the projection then logτ(πl(D)) ⊂ Rl satis�es the
convexity requirement and so πl(D) is convex. The preceding argument
applied to πl(p) now gives a monomial m in the coordinates satisfying
|m||Q < |m(p)|, so p /∈ Q̂ even in this case.

�

Theorem 2.9. Let D be Reinhardt centered at the origin. Then the
following are equivalent 1) D is the convergence region of a power series.
2) D is logarithmically convex. 3) D is monomially convex. 4) D is
holomorphically convex. 5) D is a domain of holomorphy.

Proof. 1)⇒ 2)⇒ 3) follows in view of previous lemmas and 3)⇒ 4) is
trivial. 4)⇒ 5) is discussed in the next chapter and 5)⇒ 1) is likewise
trivial by Taylors theorem. �

Example 2.3. ∑
α∈Nn

|α||α|z2α

αα

converges precisely in B(0, 1) ⊂ Cn.

15See the Oka-Cartan section, i.e. section 5, for the notion of hulls.
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2.4. The Weierstrass preparation theorem. Let us de�ne a func-
tion holomorphic at a = (a1, a2, · · · , an) = (a′, an) with f(a) = 0 to be
zn − regular of order k ∈ N at a , if g(zn) = f(a′, zn) has a zero of
order k at zn = an, i.e if

g(an) = g′(an) = g′′(an) = · · · g(k−1)(an) = 0

Furthermore we say that a function has total order k at some �xed
point if the last nonvanishing homogeneous polynomial is of order k in
the homogeneous expansion of the function around the point.

Lemma 2.4. If f is a holomorphic function of total order k <∞ at a
point w , then after a suitable nonsingular linear change of coordinates
in Cn the function will be regular of order k in zn at the point w .

Gunning and Rossi. Set w to be the origin, the function has then the
homogeneous expansion around it. Select any point a = (a1, a2, a3, · · · ) 6=
0 such that Pk 6= 0, Pk denoting the homogeneous polynomial of order
k, since a is not nill there are constants such that the linear change of
coordinates

zi = aiζn +
n−1∑
j=1

bijζj

is nonsingular. In these new coordinates our function g(ζ) = f(z(ζ))
still has total order k, and moreover gk(0, · · · , 0, 1) = fk(a1, · · · , an) 6=
0; but then g is regular of order k in ζn at the origin, as desired. �

Lemma 2.5. Suppose f is holomorphic at the origin and f(0) = 0
and furthermore is zn − regular of non-vanishing order k. Then for
su�ciently small δn > 0 there is δ′ > 0, such that for each �xed z′ ∈
B(0, δ′)n the equation f(z',z)=0 has precisely k solutions ( counted with
multiplicities) in the disc |zn| ≤ δn.

Gunning and Rossi. By hypothesis, for each su�ciently small δn >
0, g(zn) = f(0′, zn) is holomorphic on |zn| ≤ δn, g has a zero of order k
at 0, and g(zn) 6= 0 for 0 < |zn| ≤ δn. By continuity of f and Rouche's
theorem, there is δ′ > 0 such that the conclusion of the lemma holds
for all z′ ∈ B(0, δ′)n. �

When dealing with analytic sets of the type f = 0 one might want
to have a factorization of the function in question in the variable zn
and an algebraic unit u, i.e in this context a function u 6= 0 in some
neighbourhood in consideration. To be more precise, given a func-
tion f of nonzero total order at a point z0 one would like to write
f = u(zn − φ)α, u 6= 0 ∀z ∈ N(z0), φ = φ(z1, · · · , zn−1). Can this

28



be done and are these zeros considered in the variable zn holomorphic
functions? Unfortunately the answer is in general negative if we re-
quire the zeros to be holomorphic. However it turns out that when
looking at the maximally symmetric functions of the zeros φi that are
generated when expanding the above expression we discover that they
are holomorphic. These expanded polynomials have a fancy name -
Distinguished Weierstrass pseudopolynomials.

Theorem 2.10 ( Weierstrass preparation theorem). Assume that f is
holomorphic at 0, f(0) = 0, and suppose f is zn − regular of order
k ≥ 1. Then there is a unique factorization

f = ωu

on some polydisc B(0, r)n, where ω ∈ O(B(0n, rn)) is a distinguished
pseudo-polynomial of degree k at the origin and u is a unit in the poly-
disc considered.

Gunning and Rossi. Let f be a function holomorphic in a neighboor-
hood of the polydisc B(0, r)n and regular of order k in zn at the origin.
By a previous lemma, there is a polydisc B(0, δ)n ⊂ B(0, r)n such that
for every point (z1, · · · , zn−1) ∈ B(0, δ)n f has k zeros in |zn| < δn;
These zeros will be denoted by φ1, · · · , and for these φi(0, 0, · · · ) = 0,
|φi(z1, z2, · · · )| < δn will hold. Set

h = zkn + a1z
k−1
n · · ·+ ak

where the a′j are the elementary symmetric functions, which actually
are holomorphic in the values φ. It is easy to see that the aj's are
holomorphic in B(0, δ)n, holding (z1, z2, · · · ) �xed(See Ahlfors[4], page
154) ∑

i

φi
r =

1

2πi

∫
|ζ|=δ

∂f

∂ζ

ζr

f

The function f(· · · , zn−1, ζ) is nonzero on |z1| < 1, |z2| < 1, · · ·
|zn| = 1, hence the power sum above is holomorphic on B(0, δ)n. Since
the elementary symmetric functions are polynomials in the power sum,
they are also holomorphic in the same polydisc. Moreover, aj(0, 0 · · · , 0) =
0 since φi(0, · · · , 0) = 0. Consequently, the function represents a Weier-
stass polynomial. The polynomial h is clearly the unique Weierstass
polynomial having the same zeros as the function f in B(0, δ)n. To
complete the proof of the theorem, we need to show that the quotient
u = f

h
is holomorphic and non-vanishing in B(0, δ)n. This quotient is

by construction holomorphic and non-vanishing in |zn| < δn. Setting
M to be a least upper bound of |f | in B̄(0, δ)n and setting m > 0 to
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be the greatest lower bound of |h| on |z1| ≤ δ1, |z2| ≤ δ2, · · · , |zn| = δn
it follows from the maximum principle in one variable znthat|u| ≤ M

m

∀ z ∈ B̄(0, δ)n. Then by the Riemann extension theorem 16 u is indeed
holomorphic and thus the non-vanishing property already being noted
the theorem is concluded. �

Corollary 2.7 (Implicit Function Theorem). Assume f ∈ O(B(0, r)(n))
and regular of order 1 in zn at z0; Then ∃ B(0, δ)(n) ⊂ B(0, r)(n) and
a unique holomorphism φ(z1, · · · , zn−1) such that φ = z0n.

Proof. Suppose f is regular of order in zn of order 1, then we can
uniquely write

f = u(zn − φ(z1, zn−1))

u being a unit and φ a holomorphism the corollary falls. �

2.5. Oka-Cartan Theory. In this section we shall explore one of the
most fundamental concepts of complex analysis, namley the phenom-
enon of continuation. We follow Vitushkin[6], and shall start with
some de�nitions and then survey results to try to get a general feel
for the subject. The envelope of holomorphy D̃ of a domain or com-
pact set D is the largest set to which all functions holomorphic on
D extend holomorphically, and is in general a multisheeted Riemann
domain over Cn. A domain of holomorphy is it's own envelope, i.e
D = D̃, and it is also often called holomor�cally convex17. Closley
related to the envelope concept is the notion of hulls 18 with respect
to some class or other of functions - there are lot's of them- and two
of the most prominent are the polynomial hull and the holomorphic
hull. The polynomial hull of a set D ⊂ Cn is the set of all z ∈ Cn ;
∀ polynomials P (ζ); |P (z)| ≤ supζ∈D |P (ζ)|. 19 Every smooth curve
is holomorphically convex but the polynomial hull of the curve is in
general non-trivial, for example if it is closed and has no sel�ntersec-
tion then the hull is either trivial or it is a one dimensional analytic
set whose boundary coincides with the curve. We call a set analytic
if it is described as ker(f), f : Cn → Cm, i.e given as the common

16Not discussed in this text, but states that @ holomorphisms with isolated point
singularities in several complex variables, opposite to the one variable case(See
Chirka among others in [6], Gunning and Rossi[2], Range[1]).

17The reason for this similar to the reason that people talk about projective
algebraic varieties-someone made a theorem. ( Although this time it's not Chow! )

18Which we denote by a hat.
19It might be worth knowing that the union of three or less disjoint balls in Cn

is polynomially convex.
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zeros of a �nite set of holomorphisms. So why are domains of holomor-
phy of such an interest? Well, in these domains we can solve lots of
classical problems in complex analysis like �nding integral representa-
tions, polynomial approximations, solving Cauchy-Riemann equations
and solving the problem of division.20 We give two examples namely
polynomial polyhedra, which are de�ned by a system of inequalities
|Pi| ≤ 1, Pi being polynomials, and strictly pseudoconvex domains.
We say that a set is strictly pseudoconvex if in some neighbourhood
of each of it's boundary points is strictly convex for a suitable choice
of coordinates. Suppose the hypersurface bounding a the domain in
question is described by ρ(ζ, ζ̄) = 0 then

Theorem 2.11 (Levi 1910). In order for M with a C2 boundary to be
strictly pseudoconvex it is su�cient that ∂∂̄ρ be positive de�nite.21 22

We also have

Theorem 2.12 (Oka's Theorem). Every strictly pseudoconvex set is
holomorphically convex and conversely any domain of holomorphy can
be exhausted from the interior by strictly pseudoconvex sets.

Boundary points of a domain of holomorphy are not equivalent. An
important rôle is played by the Shilov boundary S(D) which is the
smallest closed subset of the boundary ofD; ∀f ∈ C(D̄)∩O(D) we have
|f(z)| ≤ supζ∈S(D)|f(ζ)|. For a ball the Shilov boundary coincides with
the topological boundary whereas for the polydisc B(0, 1)n it coincides
with (SoC)n , i.e the n-dimensional torus. Actually the following holds;

Theorem 2.13 (Basener 1973). Assume the boundary to be C2,/ then
S(D) = closure of strictly pseudoconvex points.

For domains of holomorphy a strong maximum principle holds.

Theorem 2.14. Let D be a domain of holomorphy and f a nonconstant
holomorphism continuous on D̄ assuming a maximum on z ∈ D̄. Then
z ∈ S(D).

It is also known that

Theorem 2.15. If D is a domain of holomorphy it falls that Hk(D,C) ∼=
{0}, k > n. and actually if it is polynomially convex 23 Hn(D,C) ∼= {0}

20Later we will talk of another kind of 'domains' where we still can solve our
problems.

21Note the resemblence to a Kahler potential( See Nakahara[8] and
Kobayashi[13]).

22i.e it all comes down to looking at the eigenvalues of the Hessian ( ∂2f
∂ζσ∂ζ̄ρ

).
23Serre 1953, Andreotti and Narasimhan 1962
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also follows. The Dolbeault cohomomology groups of a domain of holo-
morphy are trivial.

Theorem 2.16 (Oka, Cartan 1950). The following is equivalent; 1) D
is a domain of holomorphy. 2) The problem of division is solvable in
D. 24 3) Each function holomorphic on a complex submanifold of D is
the restriction of some function holomorphic throughout D.

The �rst cousin problem is said to be solvable if it is possible to
construct a meromorphism with given poles, the second if it is possible
to construct a holomorphism with given zero's.

Theorem 2.17 (Oka 1937, 39, Serre 1953). The �rst cousin problem is
solvable on a domain of holomorphy, and if in addition H2(D,Z) ∼= {0}
then the second cousin problem is solvable.

We call the manifold X a Stein manifold if is 1) holomorphically
convex, i.e if the holomorphically convex hull of each compact set in X
is compact in X, and secondly 2) ∃ on X a �nite family of holomorphic
functions such that each point has a neighbourhood in which these
functions seperate points. Each domain of holomorphy is an example
of a Stein Manifold, and so are closed complex submanifolds of Cn. On
Stein manifolds just as on domains of holomorphy, some problems are
solvable, namely; the division problem, the ∂̄-equation, the �rst cousin
problem is solvable and also the second provided the second integer
cohomology is trivial.

Theorem 2.18 (Cartan 1953). X is Stein i� H1(X,S) ∼= {0}. H1(X,S)
denoting �rst cohomology group with coe�cients in an arbitrary coher-
ent analytic sheaf.

Theorem 2.19 (Oka-Grauert Principle). Let X be Stein. Then the
second cousin problem has a holomorphic solution i� it has a continuous
solution.25

Excercise 2.5. Derive a complex version of the Main theorem of in-
tegration calculus by using stokes formula on cochains of bidegree (1,1)
one a one dimensional complex manifold. When calculating with this
formula the reader will discover that it is not of much practical use -
Can it be extended to be more useful? Discuss plausible applications of

24This is a global result on D, the Weierstrass result is a local statement.
25The token principle emanates from the �losofy that seems to come along with

Stein manifolds - Any holomorphic problem is a continuous problem and vice versa.
For example deformations of holomorphic vector bundles on a Stein manifold bases
can be looked upon either continuously or holomorphically, thus we may sometimes
use holomorphisms to work on continuous deformations of bundles!
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knowing H
(p,q)

∂̄
(Σg), Σg being a compact complex 1-dimensional mani-

fold with genus g.

Excercise 2.6. In texts in complex geometry authors often name a
special form called the Kahler form Ω. Depending on author one writes

Ω =
i

2
hσρdζσ ∧ dζ̄ρ

or twice that 26, h being a hermitian metric on a complex manifold.
If this form is closed the manifold is called Kahler. Kahler manifolds
are a very restricted class of manifolds, yet by coincidence at least 3
of the canonical manifolds studied are Kahler. CP n has a 'standard'
metric often used, called the Fubini-Study metric, which satis�es that
requirement among others. Find examples of other Kahler manifolds.
27

2.6. Some Elementary Cohomology. In this section we shall get
aquainted with some algebraic topology and its applications to analy-
sis. In one as in several variables, either real or complex, it is impor-
tant to understand basic algebraic topology to understand the conse-
quences it has for evaluation of integrals, solutions of partial di�erential
equations, analytic continuation, integral representaions and functorial
properties of various analytical objects like the Cauchy integral for-
mula. It also intimatley related to the concept of a �bration, �nite or
in�nite-dimensional(which is something that the present text will not
go into), which is nowadays as fundamental to geometry, topology and
analysis as tying your shoe laces before going outdoors.

Example 2.4. The smooth kernal of the Laplacian ∆ on a closed com-
pact orientable manifold X has dimensionality b0 = dimR(H0(X,R)).

Example 2.5. The value of an integral incerceling a pole is invariant
under homotopies of the integration contour .

Example 2.6. The existance of a primitive to a meromorphism f(ζ)
over C is determined by the topology of the Riemann surface that is the
range of the meromorphism considered under all analytic continuations,
called the the global analytic sheaf of the function (See Ahlfors[4]). If
it has non-trivial topology (monodromy ≡ isomorphism of homotopy
groups is an often used word.) over the subset of C considered one will
not �nd a primitive.

26We �x it to be the latter for now.
27This by the way provides us with a good example of the fact that closed forms

need not be exact. H
(1,1)

∂̄
(CP 3, C) ∼= C nontriviality actually generated by Ω.
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Example 2.7. To be able to use the general Martinelli-Bochner for-
mula, which is an integral representation over arbitrary domains in Cn

, one has to �rst know what a cycle is.

Let us get aquainted with the elementary calculus(We will unfortu-
nately not go into homotopy in this text!). Assume M to be a smooth
real manifold of dimension n and consider ΛM ≡ Γ(M,ΛT ∗M) 28. We
have the sequence

d d d d
{0} → Λ0M → Λ1M → · · · → ΛnM → 0

∼=

C∞(M) .

Pointwise on ΛM a smooth map f : My → Xx , x a coordinate sys-
tem on X,generates the map f ∗ω = f ∗ωαdxα1 ∧ dxα2 ∧ · · · ∧ dxαp
= ωαf

∗dxα1∧dxα2∧· · ·∧dxαp = ωα
∂(xα1,xα2,··· ,xαp)

∂(yβ1,yβ2,··· ,yβp)
dyβ1∧dyβ2∧· · ·∧dyβp.

If f is a di�eomorphism this determinant is seen to be nonsingular and
thus since by de�nition this map is seen to be a homomorphism of exte-
rior algebras noting , f still a di�eomorphism, that each ω ∈ ΛXx has
a unique η ∈ ΛMy it falls that f ∗ is an algebraic isomorphism of exte-
rior algebras ΛM under such circumstances.29 But we also note that
[d, f ∗] = 0 since it can not matter in which order we take the di�rential
or change the coordinates on M for example. Thus the diagram

C∞(X)

∼=

d d d d
{0} → Λ0X → Λ1X → · · · → ΛnX → 0

f ∗ ↓ f ∗ ↓ f ∗ ↓
d d d d

{0} → Λ0M → Λ1M → · · · → ΛnM → 0

∼=

C∞(M)

28See previous sections.
29This f∗ has a fancy name by the way-It's called the pullback of f for obvious

reasons.
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is seen to commute and so
ker(d|Cp(M,R))

Ran(d|Cp−1(M,R))
≡ Zp(M,R)

Bp(M,R)
≡ Hp(M,R)30

has to be invariant under di�eomorphisms ofM , i.e is functorial. Hence
we have something which measures topological 31 inequivalence. If the
M is an open convex subset of Rn we can always pull it back to a point,
hence in those cases Hp(M,R) ∼= {0}.
Using the same line of reasoning with the additional requirement

that f be a biholomorphism(i.e a holomorphic di�eomorphism) one
can prove that

C∞(X) � O(X)

∼=

∂̄ ∂̄ ∂̄ ∂̄
{0} → Λ(0,q)X → Λ(1,q)X → · · · → Λ(n,q)X → 0

f ∗ ↓ f ∗ ↓ f ∗ ↓
∂̄ ∂̄ ∂̄ ∂̄

{0} → Λ(0,q)M → Λ(1,q)M → · · · → Λ(n,q)M → 0

∼=
C∞(M) � O(M)

q �xed,0 ≤ q ≤ n, commutes. Consequently one de�nesH(p,q)

∂̄
(M,C) =

ker(∂̄|
Λ(p,q)(M,C)

)

Ran(∂̄|
Λ(p,q−1)(M,C)

)
on complex spaces.

Excercise 2.7. Prove that the above diagram commutes, i.e that Dol-
beault Cohomology groups behave functorially under biholomorphisms.

We have now brie�y mentioned the basic facts about the two most
common cohomology theories, but there are more. However this text
cannot address the needs of someone looking for a textbook in algebraic
topology so we will have to omit these and instead refer to the topology
course which is give in parallel with this course. But before closing we
will mention a couple of useful theorems.

Theorem 2.20. Two homotopically equivalent manifolds have isomor-
phic cohomology groups.

30The relation ω ∼ η is said to hold if ω = η mod Bp(M, R) under addition, and
it is it that de�nes the quotient. Two forms that are equivalent in this sense are
called cohomologous.

31Topological invariance is invariance under homeomorphisms. As shown by
Milnor in the 50's in dimension 7 and Donaldson in dimension 4 (1984) there are
toplogically equivalent manifolds which are not di�eomorphic. However every dif-
feomorphism is trivially seen to be a homemorphism so this is why we restrict our
attention to di�eomorphisms in this discussion(See Novikov[17]).
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Proof. See Novikov, Fomenko and Dubrovin, Modern Geometry III [7],
theorems 1.3, 1.5 and lemma 1.4. �

Lemma 2.6 (Poincare's lemma). Let M be di�eomorphic to the unit
ball in Rn. Then dω = 0 IFF ω = dη, ω ∈ Λ(p+1)M, η ∈ ΛpM, p ≥ 0.

Proof. Note that the origin is a deformation retract of the unit ball.
Thus all cohomology groups trivialize in view of the previous theo-
rem. By invariance of cohomology groups under di�eomorphisms the
assertion now falls. �

Theorem 2.21 (Poincare duality). Let M be compact, closed32 and
orientable. Then Hn−q(M,F) ∼= Hq(M,F), F being the complex or real
�eld.

Theorem 2.22 (Non-abstract deRham Theorem). Let M be compact
closed. Then Hp(M,C) ∼= Hp(M,C) , being �nite dimensional and
dual to each other.

Theorem 2.23 (Hodge's Theorem). Let M be compact Kahler. Then

Hp(M,C) ∼=
⊕
p=r+s

H
(r,s)

∂̄
(M,C)

Lemma 2.7 (Dolbeaults's lemma). Let M be Biholomorphic to the unit
ball in Cn. Then ∂̄ω = 0 IFF ω = ∂̄η, ω ∈ Λ(p,q+1)M, η ∈ Λ(p,q)M, p ≥
0, q ≥ 0.

The proofs of the four previous theorems would necessitate a far too
deep plunge into various subjects and are therefore omitted.

Excercise 2.8. Calculate H1(U(1),C) via Poincare duality.

Excercise 2.9. Prove H
(0,0)

∂̄
(M,C) ∼= O(M). Hodge's theorem should

then imply something about the number of holomorphisms on a compact
kahler manifold. The relation derived actually holds on any compact
complex manifold.

Excercise 2.10. Digress on the relation between H1(U(1),Z) ∼= H1(S1
R,Z) ∼=

Z the Cauchy integral formula

2πi n(γ, z) Res{f, z} =

∫
γ

f(ζ), f ∈M(Ω)

with a pole at z and holomorphic otherwise.

32i.e without boundary.
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Excercise 2.11. The function f(ζ) = 1
ζ
is holomorphic in C ∼ {0}.

Yet we can't for arbitrary paths γ in the mentioned set use the main
theorem of integral calculus. Why is that and what is the relevance of
the homology class 33 of the path γ around the origin?

Excercise 2.12. Assume that for B : C2 → C de�ned pointwise by

B(z, ζ) ≡
∫ 1

0

tz−1(1− t)ζ−1dt

we knew B(z, ζ) = Γ(z)Γ(ζ)
Γ(z+ζ)

on B((1, 1 + i/
√

2), 1/2) ⊂ C2. Extend this

to hold on a larger subset of C2.34

33Often called index.
34Answer: At least C2

+.
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3. Quaternionic, Octonionic and Clifford Analysis

In this section we shall outline the elementary aspects of quater-
nionic, octonionic and Cli�ord analysis. The main goal will be to get a
holomorphic mathematical apparatus that works in some ( analytical)
sense on these spaces.

3.1. Basic De�nitions of Hyperanalysis. We begin by noting that
the operation of di�erentiation is well de�ned( as the usual limit) for
real partial di�erentiations with noncommutative coe�cients and that
we can split the exterior derivative/use coordinates in a manner similar
to the ∂, ∂̄, z, z̄ of complex analysis in these spaces. Let us de�ne such
coordinates for the quaternionic case �rst;

De�nition 3.1. We de�ne quaternionic coordinates by

ζ = t+ ix+ jy + kz, ζ i = t+ ix− jy − kz,
ζj = t− ix+ jy − kz, ζk = t− ix− jy + kz,
(t, x, y, z) ∈ R4

and call ζ the holomorphic coordinate.

We also have a duality, often misleadingly confused to be a real inner
product duality,35

De�nition 3.2. ζ 7→ ζ̄ = t− ix− jy − kz

and di�erentiations

De�nition 3.3.

∂ζ = ∂
∂ζ

= 1
4
(∂t − i∂x − j∂y − k∂z),

∂ζi = ∂
∂ζ

= 1
4
(∂t − i∂x + j∂y + k∂z),

∂ζj = ∂
∂ζ

= 1
4
(∂t + i∂x − j∂y + k∂z),

∂ζk = ∂
∂ζ

= 1
4
(∂t + i∂x + j∂y − k∂z),

with domain P 1. We interrupt to de�ne P 1 and some other objects
that we will need in the following.

De�nition 3.4. OR(Ω,M) is the algebra of real analytic M-valued
functions over Ω, M a �eld, algebra or similar object. P n is the space
of M valued polynomials i.e OR(Ω,M) ⊂ P∞ = ∪n∈NP

n.

It is then a matter of simple calculus left to the reader to prove one
of the things we need;

35This derives it's name by the fact that it is the projection of a duality de�ned
on the entire Cli�ord algebra onto the lefthanded part. It is also a duality directly
in the 'hyper' sense, just like on C.
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Lemma 3.1. The above quaternionic coordinates are mutually orthog-
onal in the sense of di�erentiations, i.e

∂ζζ
i = ∂ζζ

j = ∂ζζ
k = 0

∂ζiζ = ∂ζiζj = ∂ζiζk = 0
∂ζjζ i = ∂ζjζ = ∂ζjζk = 0
∂ζkζ i = ∂ζkζj = ∂ζkζ = 0

Let us list some properties that can easily be checked. We list them
as a lemma whose proof we leave to the reader;

Lemma 3.2.

ζ̄η = η̄ζ̄ ,
(ζη)i = ζ iηi, · · · , (ζη)k = ζkηk,
ζi = iζ i, · · · , ζk = ζk,
i−1ζi = ζ i, · · · , k−1ζk = ζk,
Reζ = 1

2
(ζ + ζ̄) = 1

4
(ζ + ζ i + ζj + ζk)

Imζ = Sζ = 1
2
(ζ − ζ̄)

Imiζ = S iζ = 1
4i

(ζ + ζ i − ζj − ζk),
Imjζ = Sjζ = 1

4j
(ζ − ζ i + ζj − ζk),

Imkζ = Skζ = 1
4k

(ζ − ζ i − ζj + ζk),

with S denoting either the spatial part 36, also called the imaginary
cart, de�ned by S(ζ) = ζ −Reζ. Iml denotes the l:th spatial part, by
convention taken to be real. There is also a real inner product < ζ, η >=
Reζ̄η = tt′+xx′+yy′+zz′, ζ = t+ ix+ jy+kz, η = t′+ ix′+ jy′+kz′,
and a inner hyperproduct < ζ, η >= ζ̄η.

We can also add the following easy lemma, again with proof left to
the reader.

Lemma 3.3. Set α = ix+ jy + kz to be an 'angular' coordinate, and
de�ne ζ = t+ α. Then, setting η = eζ,

eα = cos(|α|) + α
|α|sin(|α|),

ln η = ln|η|+ argη,
arg η = α+ 2παn

|α| , n ∈ Z.

36This nomenclature derives it's existance from physical considerations, which
in string theory at times produce the convention of having circular coordinates
on the world sheet. It would of course be just as justi�ed to say angular part.
Either way the real coordinate corresponds to either time or the logarithm of the
modulus of a p-brane hypernumber from these p-brane considerations, depending on
conventions, special case and coordinate choice. Notice that there goes a convention
of left moving is holomorphic on a (hyper)p-brane along with this.
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It is not uncommon to choose a branch of ln to make it singlevalued
in hyperanalysis, with complex analysis as the canonical example.
We would like to de�ne the concept of a hyperbolic quaternion for

later purpose

De�nition 3.5. Upon continuation of the 37 real coordinates (x, y, z)
to imaginary values in some representation of the quaternions one ob-
tains hyperquaternions or hyperbolic quaternions HHyp. In particular
the hyperbolic quaternions have a Minkowski metric under the duality
de�ned above.

To do analysis in a satisfactory manner we have to have invertible
objects at times, the main idea we shall use to do this in the use of
hyperbolic Cli�ord algebras is continiuing the generators of the algebra
corresponding to negative signs in the quadratic form that determines
the algebra 38-conversely we continue back to Euclidean signature if
we are given an algebra with mixed signature so that we can do our
calculations. Continuing back and forth like this we avoid trouble since
we are only interested in having Cl1 invertible for our purposes.
It should be pointed out that the above prescriptions also hold for

the Cli�ord algebras Cl(1,3) and Cl(4,0) to get required orthogonality
etc( then taking into account the e�ect of dualities. This a�ects the
signs in various hyperreal Cauchy-Riemann operators.) In those cases
the above coordinates are called lightcone coordinates39.
For the general case including other hyperspaces one de�nes coordi-

nates similar to the above with the crucial property contained in the
lemma above. We presently have all the cases we will be needing in
this thesis. We recommend the reader to read Bourbakis algebra for
further elementary material on quaternions and hypercomplex algebra.
In the following it is understood that n̄ means the multiindex with

unit entries at the non-holomorphic coordinates and nill at the holo-
morphic, similarly n means the multiindex with unit entries at the
holomorphic and nill at the antiholomorphic.
We shall denote a general hyperreal space M, then meaning it over

R and MC it's complexi�cation. The hyperquaternionic space HC and
the space Cl(4, 0)C are common in physics ever since the days of Hamil-
ton, Cayley, and Cli�ord. To Hamilton they were a necessary conse-
quence of the rotations of 3-dimensional Euclidean space, and other

37The non-real coordinates of a quaternion are also called spatial coordinates
while the real called the time coordinate. This seems to be more than an analogy
at times-as already Pauli and Hamilton before him pointed out.

38Physicists call this process Wick rotation
39See Green,Schwarz, Witten-Superstring Theory I and II.
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(meta)physical interpretations are known as well. In particular in the
pre-war era it was among other things by use of quaternions that the
Pauli exclusion principle came to daylight. A paper entiteled 'Uber
das Pauliche eqvivalenzverbot', by Jordan and others, form the early
30:s bears witness to this. Similarly this reappears in spinor quantum
electrodynamics and other gauge theory generalisations and actually
amount to an economic way to do some angular momentum consider-
ations in quantum �eld theory- simply embedding them into the Feyn-
man rules. For example the gauge boson vertex

Example 3.1.

=-igT α γ µ

Figure 1. A Feynman rule that involves a hypernum-
ber in Cl(1, 3) ⊂ Cl(4)C. This hypernumber countes
helicity states in order to conserve angular momentum
in quantum theory. Note that the left-handed part of a
complexi�ed Cli�ord algebra lagrangian can and is com-
monly handeled by use of HC. Schwinger in his days
(approximately 1947-1948) invented the Schwinger ro-
tation, writing Cl(4)C = γ0(HC ⊕ H̄C), something that
most physicists learn in prekindergarten as the 'Chiral'
or 'Weyl' representaion of the Dirac algebra-The physi-
cist name of Cl(4)C. The Dirac algebra also has con-
venient ways of implementing the operations C,P, T of
quantum �eld theory. Experience from electroweak the-
ory shows, however, that the left-handed or righ-handed
objects of physics might di�er at times, thus making HC

a more fundamental object. It is unusual nowadays to
see fermionic lagrangeans that are not broken up in left-
handed and right-handed piece in more practical use of
the standard model physics.

with Tα ∈ g a lie algebra, g a real called charge, γµ genertors of a
Cli�ord algebra and
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γ0 =

(
0 1
1 0

)
Finally use of hyperquaternions, or spinors as they are also called,

is the simplest way to implement Wigner rotations, i.e the lift from
SO(1, 3) to SL(2,C) needed to implement Lorentz transformations
on the Hilbert spaces of physics. Since SO(3) ⊂ SO(1, 3), SU(2) ⊂
SL(2,C) and SU(2)C = SL(2,C) this motivated the- somewhat abusive-
name complex angular momentum among some particle physicists in
1960's. P. Deligne has further material on spin groups and complexi�-
cation of varieties( of course a group can often be seen as a variety with
some operations because of the nature of the conditions that de�ne it)
in his IAS lecture notes, in particular a good set of Dynkin diagrams
and 'accidential' homo/isomorphisms in spin groups.

3.2. Some Algebraic Trivia of Hyperanalysis. It is important to
understand the elementary properties of hyperanalysis algebra in or-
der to to be able to make calculations and to appreciate the di�er-
ences, especially between complex and hypercomplex case, due to non-
commutativity.
We would like to warn the reader-extreme care has to be taken when

doing calculations, the di�erences are much more subtle than a simple
transition from complex analysis and are reminicent of superalgebra
with noncommutative coe�cents.
Let us de�ne the concept of a hypertensor.

De�nition 3.6. ζ = xAeA is the holomorphic coordinate for M a hy-
perspace (minimally) generated by {eA}, xA n real coordinates, n the
cardinality of the set of generators, Thus ζ ∈M1 ≡ spanR{eA}.

De�nition 3.7. A hypertensor T is a real multilinear map from a
tensor product of modules V , V ∗, V ∗ being a dual space de�ned by
some duality, over M as follows; T : π(

⊗
V
⊗

V ∗) 7→ M, π being
some permutation of vector spaces in this tensor product. It is given in
terms of hypercoordinates ζ as

T = π[T ν1···νm
µ1···µn

dζµ1 · · · ⊗ dζµn ⊗ ∂ν1 · · · ⊗ ∂νm ]

π a permutaion of symbols, Einstein sum ranging over holomorphic as
well as non-holomorphic indices. We often use the word tensor to mean
hypertensor when there is no risk for confusion.

We have then a natural choice for a de�nition of antisymmetric hy-
pertensor, a hyperform,
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De�nition 3.8. A hyperform is an element in
∧
V , V a module or

bundle module over M. We often use the word form in a broader con-
text to denote a

∧
V section on hypermanifold X with V ≡ T ∗X the

cotangent bundle over M.

De�nition 3.9. We de�ne
∧

(X,M) ≡ ORΓ(X,
∧
T ∗X), i.e to the ex-

terior cotangent bundle sections taking real analytic M-valued function
coe�cents.

This in turn makes it possible for us to de�ne exterior di�erentia-
tions on our spaces. We begin �rst with the split holomorphic/non-
holomorphic of the exterior derivative.

De�nition 3.10. We de�ne ∂L =
∑
dζµ∂µ, sum over holomorphic in-

dices, ∂AL =
∑
dζµ∂µ, sum over non-holomorphic indices. Similarly we

de�ne ∂R =
∑
∂µdζ

µ, sum over holomorphic indices, ∂AR =
∑
∂µdζ

µ,
sum over non-holomorphic indices. Both of these operators have P 1

∧
,

the exterior algebra of forms with �rst degree coe�cients as domain. A
stands in the above for antiholomorphic, which we take to mean non-
holomorphic.

We now use this to de�ne extensions, for which we use the same
symbols, to all of

∧
(X,M) via the Leibniz rule.

De�nition 3.11. ∂L, ∂
A
L , ∂R, ∂

A
R are de�ned on

∧
(X,M) via the Leib-

niz rule on real factors.

Lemma 3.4. This de�nition determines the various exterior deriva-
tives uniquely.

Proof. Let δ denote this di�erentiation . Then δΠfi is claimed to be
unique, fi real analytic real factors. For f, g, h we have L.S = δ(fgh) =
δ(fg)h+ fgδh = δfgh+ fδgh+ fgδh, R.S = δfgh+ fδgh = δfgh+
fδgh + fgδh. But then the claim follows inductively for real factors.
For the general case of non-real factors uniqueness of di�erentiation
follows by uniqueness of commutation. �

Example 3.2. For the quaternionic case in a holomorphic/ anti-holomorphic
split we have ∂iζ = i∂iζ = 0 according to the above de�nition and the
elementary properties listed in previous sections, among them ζi = iζ i.

We now de�ne another split for which we will have equal use-the
split holomorphic dual holomorphic. It necessitates another de�nition
of ∂ζ , so one has to remember which de�nition one is using and which
version of ∂ζ that corresponds to it.
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De�nition 3.12. De�ne ∂ζ = 1
2
(∂t − i∂x − j∂y − k∂z), and use this

de�nition whenever one is using the following split; ∂L =
∑
dζµ∂µ,

∂dL =
∑
dζ̄µ∂̄µ, summations running over holomorphic indices, and

∂R =
∑
∂µdζ

µ, ∂dR =
∑
∂̄µdζ̄µ, again sums over holomorphic indices,

d as a superscript here stands for duality.

De�nition 3.13. ∂L, ∂
d
L, ∂R, ∂

d
R are de�ned on

∧
(X,M) via the Leib-

niz rule.

We then have our �rst important theorem, namely that the above
two really are splits of the exterior di�erentiation.

Theorem 3.1. On
∧

(X,M) we have holomorphic-antiholomorphic splits

d = ∂L + ∂AL , d = ∂R + ∂AR

and holomorphic-dual holomorphic splits

d = ∂L + ∂dR, d = ∂R + ∂dL

which furthermore all satisfy exactness, i.e δ2 = 0, δ any of the
operators appearing in the above split.

Proof. (1) STATEMENT 1 The above operators are splits of d in
the above sense.

Proof. We show this to hold for the quaternionic case for sim-
plicity. Since the above opertors are all de�ned via Leibniz rules
inductively we note that by calculations similar to

(∂R + ∂AR)(ω ∧ η)
= ∂Rω ∧ η + (−1)pω ∧ ∂Rη + ∂ARω ∧ η + (−1)pω ∧ ∂ARη
= ((∂R + ∂AR)ω) ∧ η + (−1)pω ∧ ((∂R + ∂AR)η)

it su�ces to show this to hold on P 1
∧
, the exterior forms with

�rst degree polynomial coe�cients. But then we get for the
holomorphic/ non-holomorphic case

L.S = d = dxµ∂µ,
R.S = ∂R + ∂AR
= ∂ζdζ + ∂iζdζ

i + ∂kζ dζ
k + ∂kζ dζ

k

= 1
4
((∂t − i∂x − j∂y − k∂z)d(t+ ix+ jy + kz) + · · ·

+(∂t + i∂x + j∂y − k∂z)d(t− ix− jy + kz))
= Re[(∂t − i∂x − j∂y − k∂z)d(t+ ix+ jy + kz)]
= ∂tdt+ ∂xdx+ ∂ydy + ∂zdz = L.S

(The lefthanded case is treated similarly) and for the holo-
morphic/ dual holomorphic case

44



L.S = d = dxµ∂µ,
R.S = ∂R + ∂dL
= ∂ζdζ + dζ̄∂̄ζ
= ∂ζdζ + ¯∂ζdζ
= Re[(∂t − i∂x − j∂y − k∂z)d(t+ ix+ jy + kz)] = dxµ∂µ

�

(2) STATEMENT 2 Exactness.

Proof. Again since the above operators are all de�ned via Leib-
niz rules inductively we note that by

δ2ω ∧ η = δ(δω ∧ η + (−1)pω ∧ δη)
= (−1)pδω ∧ δη + (−1)p+1δω ∧ δη + δ2ω ∧ η + ω ∧ δ2η
= δ2ω ∧ η + ω ∧ δ2η
ω ∈

∧p(X,M), η ∈
∧q(X,M), p ∈ N.

it su�ces to show this to hold on P 1
∧
. But then δ2 = 0 holds

trivially. �

�

We point out that when the choice of split is arbitray or a priori
de�ned we use d = ∂ + ∂̄ to denote the above splits.
Finally we mention four other splits, namely d = ∂L + ∂AL d = ∂R +

∂AR ,d = ∂L + ∂dR,d = ∂R + ∂dL de�ned as above on P 1
∧

but extended
by the same de�nition as on P 1 rather than the Leibniz rule, e.g ∂L =
dζµ∂µ with a sum over holomorphic indices. This later de�nition does
not satisfy exactness for the di�erent operators, but is useful in various
solutions of P.D.E's.

3.3. Explicit Examples of Simple Calculations in Hyperanal-
ysis. We start with some examples of calculations in hyperanalysis,
and then we calculate the Cauchy-Fueter kernal as an exercise to get
aquainted with how calculations usually proceed.
First of all we point out that some relations common to abelian

exterior algebra generally do not hold, for example in general for X a
hypermanifold, i.e a smooth manifold locally homeomorphic to Mn, n ∈
Z+, with transition functions that are M hyperanalytic, M a hyperspace
with generators ea,

dζ ∧ dζ = 1
2
[ea, eb]dx

a ∧ dxb 6= 0,M = SpanK{ea}.
ω ∧ η 6= (−1)pqη ∧ ω,
ω ∈ Γ(X,

∧p T ∗M⊗M) ≡
∧p(X,M), η ∈

∧q(X,M).
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in contrast to the real case. This does NOT lead to inexistence of hyper-
cohomological theories 40 however, it only makes their representations
more complicated.

Example 3.3. In general we have

∂2ζ2 = ∂(dζ ∧ ζ + ζ ∧ dζ)
= dζ ∧ dζ − dζ ∧ dζ = 0

Example 3.4. For the quaternionic case with Φ ∈ OR(Ω,H), co-
ordinates as usual and Ω ∈ H, we have for the right exterior non-
holomorphic derivative ∂̄ := ∂̄R:

∂̄(Φ(ζ iζjζk)−1dζ i ∧ dζj ∧ dζk)
= (∂̄Φ)(ζk)−1(ζj)−1(ζ i)−1dζ i ∧ dζj ∧ dζk
−Φ(ζk)−1dζk(ζk)−1d(ζj)−1(ζ i)−1dζ i ∧ dζj ∧ dζk
−Φ(ζk)−1(ζj)−1dζj(ζj)−1(ζ i)−1dζ i ∧ dζj ∧ dζk
−Φ(ζk)−1(ζj)−1(ζ i)−1dζ i(ζ i)−1dζ i ∧ dζj ∧ dζk

Notice that there would have no di�erence between left and right di�ren-
tiation in this example.

Finally we compute the Cauchy-Fueter Kernal. We have G(ζ, z) =
−1
2π2

1
|ζ−z|2 , is a kernal for � = ∂†∂, hence we have

∂ −1
2π2

1
|ζ−z|2

= 1
2π2

1
|ζ−z|2(ζ−z) ∗ dζ̄

which we recognize as the Cauchy-Fueter kernal mentioned in Dun-
ford's article.

3.4. Integral Representations of Hyperanalysis I. In this sub-
section we shall learn about the integral representations of functions
in hyperanalysis. We are already aquainted with the complex case and
would like to generalize this the general case considered in hyperanal-
ysis. We cut stright through to the main point. In the following the
splits of the exterior di�rentiation will be an arbitray choice from the
previous section. Let Ω be compact to make the integrals well de�ned in
the following, f continuously di�erentiable, and ζ = xAeA, z = x′AeA,
the usual holomorphic coordinates, x, x′ real coordinates.

Example 3.5. For Cl(42, 0) the holomorphic coordinate is ζ = xAeA ∈
Cl1(42, 0), eA generating the algebra. One might also only take the
lefthanded part xAeA+, eA+ = P+eA, P+ lefthanded Chirality projector.

40The author has some interest in noncommutative topology, i.e. hypertopology,
however he �nds it unlikely that he will �nd space to touch that topic at any depth
in this thesis.
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Theorem 3.2 (Cauchy 1843, Fueter 1935). We have

f(z) = [< ∂Ω, f 1
(ζ−z)n̄dζ

n̄ >

− < Ω, (∂ + ∂̄)f 1
(ζ−z)n̄dζ

n̄ >] 1
ωR
, z ∈ Ω ∈ C|n+n̄|(M1,Z).

with Ω ⊂ M1 corresponding to the generator of the unit element in
the chain group C|n+n̄|(M1,Z) over Z of the hyperspace M1 belonging
to M and

ωR =< S
dimR(M1)
R ,

1

ζ n̄
dζ n̄ > .

Proof. We begin by noting that since |ζ k̄| = |ζ||k̄| 6= 0 ∀ζ 6= 0 we have
that

f
1

(ζ − z)n̄
dζ n̄

is smooth ∀ζ 6= z . Hence using Stoke's theorem and taking out a
disc of radius R around z, DM

z,R ,we have

< ∂Ω, f 1
(ζ−z)n̄dζ

n̄ >

=< Ω ∼ DM1

z,R, (∂ + ∂̄)︸ ︷︷ ︸
=d

f 1
(ζ−z)n̄dζ

n̄ > + < ∂DM1

z,R, f
1

(ζ−z)n̄dζ
n̄ >

= {R→ 0} =< Ω, (∂ + ∂̄)f 1
(ζ−z)n̄dζ

n̄ > +f(z)< S
dimR(M1)
R ,

1

(ζ − z)n̄
dζ n̄ >︸ ︷︷ ︸

=ωR

where we noted that in the second term only f(z) depends on R, as
is noticed by for example using polar coordinates, and took a limit to
R = 0.

�

Corollary 3.1 (The Quaternionic Integral Formula). This is a second
version of the Cauchy formula on the quaternions, intrinsically formu-
lated as compared to the Cauchy-Fueter formula. Under the hypothesis
of the previous theorem we have setting H := M

f = [< ∂Ω, f(ζ iζjζk)−1dζ i ∧ dζj ∧ dζk >
− < Ω, (∂ + ∂̄)f(ζ iζjζk)−1dζ i ∧ dζj ∧ dζk >] 1

ωR

Proof. H := M. Notice that M1 = M for this case. �

Corollary 3.2 (The Dirac Algebra Integral Formula). Under the hy-
pothesis of the previous theorem we have setting Cl(4, 0) := M

f = [< ∂Ω, f(ζ iζjζk)−1dζ i ∧ dζj ∧ dζk >
− < Ω, (∂ + ∂̄)f(ζ iζjζk)−1dζ i ∧ dζj ∧ dζk >] 1

ωR
,Ω ⊂M1.
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Again there is a kin to this formula, this time called the CSIO formula
which is formulated in a real manner opposite to this formula.

Proof. Cl(4, 0) := M. Notice that M1 6= M for this case by the �eld
property of the quaternions. �

Corollary 3.3 (The Cauchy integral formula on Riemann Surfaces).

f(z) =
1

2πi
[

∫
∂Ω

ω

ζ − z
−
∫

Ω

∂̄ω

ζ − z
] z ∈ Ω, ω ∈ Λ(1,0)(Cζ)

Proof. C := M and noting that the abelian property of C implies that
the exterior di�erential in the �rst expression lies in the kernel of ∂̄ a
simple calculation gives ωR. Notice that the antiholomorphic version
and dual holomorphic versions of the above integral formula are equiv-
alent on C, i.e in some sense antiholomorphic and non-holomorphic
coincide for this particular case.

�

Theorem 3.3 (Martinelli/Bochner 1943 for Cn). We have, setting
d = dimR{M1}, n = dimM1{X}, ∗ a Hodge star, an inner product
< ζ, z >=

∑
ζ̄σz

σ and ωN =
∑
ζσdζ

σ

f(z) = [< ∂Ω, f 1
||(ζ−z)||dn ∗ ωN >

− < Ω, (∂ + ∂̄)f 1
||ζ−z||dn ∗ ωN >] 1

ωR
, z ∈ Ω ⊂ X.

with Ω ⊂ X contractible in the hyperspace X and

ωR =< S
dimR(M1)
R ,

1

||(ζ − z)||dn
∗ ωN > .

Proof. The proof closely follows the one-dimensional case. Noting again
that

1

||(ζ − z)||dn
is smooth at all points except the origin we �nd via Stoke's theorem

< ∂Ω, f 1
||(ζ−z)||dn ∗ ωN >

=< Ω ∼ Ddn
z,R, ∂ + ∂̄︸ ︷︷ ︸

=d

f 1
||(ζ−z)||dn ∗ ωN > + < ∂Ddn

z,R, f
1

||(ζ−z)||dn ∗ ωN >

= {R→ 0} =< Ω, (∂ + ∂̄)f 1
||(ζ−z)||dn ∗ ωN > +f(z)ωR

again noting that only f(ζ) depends on R in the last expression.
�
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Theorem 3.4. Assume that a smooth f(ζ) 1
||ζ−z||dn ∗ωN has a integrable

extension from a contractible punctured neighbourhood N(z) ∼ z of z
to all of Ω ∼ {z} ⊂ X called ext∗f(ζ) 1

||ζ−z||dn ∗ ωN 41. Then under

the notation of the previous theorem but with X a hypermanifold 42, Ω
arbitrary in the chain group Cdn(X,Z) ,

f(z) = [< ∂Ωz,R, f
1

||(ζ−z)||dn ∗ ωN >

− < Ωz,R, (∂ + ∂̄)f 1
||ζ−z||dn ∗ ωN > +discr.] 1

ωR
, z ∈ ΩR ⊂ X.

where Ωz,R is an arbitrary contractible set containing z and included
in Ω and the discrepancy discr. is

discr. =< ∂Ω ∼ Ωz,R, ext
∗ f(ζ)

||ζ − z||dn
∗ ωN >

Proof. Since Ω = Ω ∼ Ωz,R ∪ Ωz,R is a partition with nill intersection
the theorem follows by additivity of integrals,

∫
Ω∼Ωz,R

+
∫

Ωz,R
=
∫

Ω
,

under such conditions.
�

We remark that
(1) The discrepancy discr. might be contained in the generalized

period matrix 43 of X in the case of an f that gives a cocycle
ext∗ f(ζ)

||ζ−z||dn ∗ ωN .
(2) Should the reader have a form that is a superposition of the

cocycles that generate his/hers gen. period matrix s/he only
needs project his/hers form on the basis used using the inner
product < ω, η >=

∫
X
ω ∧ ∗η.

(3) The contents of this subsection hold also for f ∈ C1(Ω) by the
last remarks of the previous section.

Finally we remind the reader that for integrals over hyperbolic spheres
44 |ζ|2 = ζ̄ζ = m2, ζ ∈M,m ∈ R( also for natural reasons called hyper-
boloids) this gives for integrals of the above type with vanishing volume

41In terms of contravariant functors induced by transition functions on exterior
cotangent bundles etc., or that it is smooth on Ω ∼ z and only takes the form
according to above on N(z) ∼ z.

42A de�nition of this concept is in the hypergeometry section. For now the reader
can think of a space that locally looks like M1

43Which is, a little bit more precisely but unconventionally put, rather an array
of matrices.

44We remind the reader that these integrals are de�ned via continuation. Also
the domains then considered are upon continuation not compact, so one uses σ-
�niteness of the spaces often considered and/or exhausts Ω from the interior.
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term an invariance under the choice of such spheres. This is the re-
lated to the famous Pauli smearing of the light cone when it comes
up in physics and has been previously observed among other things in
integral representations related to twistor theory.

z

Causal future

Cycles that evluate to the same. Incidentally

A hyperquaternionic space-time

A space-like surface

A chosen origin

Σ

X

they can be interpreted as masshells in momentum space -remember that a manifold .
is locally homemorphic to it’s tangent space and that a variety in a tangent space is,
modulo a multiplicative constant called mass, a variety in the momentum space of physics.

Figure 2. Cycles that evaluate to the same integral. It
happens that one averages over a wide variety of integrals
over such cycles-Pauli smearing. Fixing to one of these
cycles would require gauge �xing of some kind of the
group of bihyperholomorphisms. It is interesting to note
that in some interesting cases the group of bihyperholo-
morphisms BiholoM(X) is a subgroup of the conformal
group Conf(X), X a manifold.

3.5. The Riemann Mapping Theorem. In this subsection we shall
develop the 'hyper' version of the famous assertion of Riemann that
essentially reduces the question of biholomorphic equivalence in the
plane to topological equivalence. The percipient reader will proba-
bly see shadows of the �rst example of exotic structures relevant to
hyperanalysis. This manifests itself as follows; We shall be able to
prove that to each analytic di�eomorphism there is bihyperanalytic
map and conversely. Since di�eomorphisms di�er between topological
manifolds with di�erent structures this means that exotic structure in
some sense, for cases where non-real methods can be applied, emanate
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from the non-real strucure of some spaces. Actually the method of
constructing exotics from non-real elements is the oldest known way
of showing the existance of exotics, already John Milnor did so in the
late 50's. Freedman/ Donaldson were then able to show amazing re-
sults in dimension 4, among other things the existance of an in�nite
number of structures in R4. Odd as it is all exotic structures( at least
the ones I know of) seem to be generated by non-real considerations or
things closely related. On the other hand concerning dimensions rec-
ognized as equipped with 'hyper' structure {2, 4, 8, 16, · · · } one easily
sees that there are no conformal equivalences between smoothly equal
sets in general for dimension 3 and greater; this would trivialize the
Weyl tensor generically locally, which is not the case. We begin with
the principal theorem in the complex case( where manifolds have no
exotic structures but a lot of complex structures.);

Theorem 3.5. Let Ω and Ω′ be two di�eomorphic bounded subsets of
C, then they are biholomorphic45.

Proof. A long historical development initiated by Riemann, and fol-
lowed up by Caratheodory, Montel and many others. The reader is
referred to either L. Ahlfors excellent book in complex analysis or
R.Remmert's Classical Topics in Complex Function Theory, equally
excellent. �

The main point of the above theorem is that it tells us that in some
sense complex analyticity is a very natural concept in two real dimen-
sions.
In several variables the situation changes considerably. This has

been misunderstood to imply that hypergeometries are extremely rigid
and unusual as compared to smooth objects of the same dimension.
It is true that things are more rigid, but this seems to be so mainly
in the case of several variables and multidimensional hypermanifolds
(Conformal manifolds, which are linked to hypermanifolds of the kind
we are considering are not uncommon e.g among the 4-manifolds and
are just one example).
However there are approximative statements in that direction:

Theorem 3.6. Let Ω and Ω′ be topologically equivalent in Cn. Then
there is biholomorphism of Ω at most up to a distance ε > 0 from which
the boundaries of f(Ω) and Ω′ di�er when closest, i.e. infx∈∂f(Ω), y∈∂Ω′||x−
y||E2n∼=Cn ≤ ε.

45We assume it understood that we mean bihyperholomorphic.
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We now prove a theorem similar in nature but of weaker content for
the general hyperanalytic case.

Theorem 3.7. To each hyperanalytic morphism f : Ω → Ω′ there
corresponds a unique real analytic morphism and conversely in any
hyper�eld/algebra.

Proof. Setting ζ =
∑
xae

a, [xa] local real coordinates on Ω and using
various hyperre�ections ζ i we have for f ∈ OR(Ω) by expressing the
real coordinates in hyperreal coordinates

f =
∑

aαx
α =

∑
aα(
∑

bjζ
j)α

normal convergence of the former of the former on Ω proves ditto for
the latter. The converse is trivial.

�

It might be worth while noting that the case C is of such a nature
that the ring C[z] does not generate z̄ 'naturally', as opposed to H, · · · .
This means that a hyperanalytic theory is essentially a real analytic
theory for the noncommutative cases, in congruence with results of Lie
analysis, this in order to satisfy compatibility with the multiplicative
algebraic structure. This does not, however, imply non-existance of
hypertopological theories (the algebraic structure usually associated
with sheaves of forms, hyperholomorphic structure sheaves and ditto is
addition, which is abelian.).
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4. Non-real Geometry, Noncommutative Geometry and

Hypergeometry

4.1. Real geometry. In this section we shall de�ne some concepts of
real geometry in a general enough manner for the uses of this thesis.
The approach is hopefully short and powerful.

De�nition 4.1. A real topological manifold is a Hausdor� paracom-
pact 46 topological space locally homeomorphic to Rn, n ∈ Z with the
Euclidean metric topology. The structural category of such manifolds
is the called the category of topological manifolds and the morphisms
taken to be the continuous maps. Structural isomorphism is then home-
omorphism.

De�nition 4.2. A di�erentiable manifold X of class Ck, k ∈ Z is a
topological manifold together with an open cover {Uα}α∈I , I an in-
dex set, of X. Denoting local homemorphisms φα : Uα → φ(Uα) ⊂
En one requires the compositions tαβ = φαφ

−1
β to be of class Ck for

∀α, β;Uα ∩ Uβ 6= ∅. The structural category of these manifolds is then
called the class of Ck-di�erntiable manifolds. Structural morphisms of
this structural category are the maps of class Ck and the isomorphisms
the Ck-class di�eomorphisms.

For metrics over modules( over rings) or vector spaces the reader is
referred to Bourbaki's algebra or Analysis, Manifolds and Physics.

De�nition 4.3. A graded ( left) di�erentiation ∂ over a �eld, ring
K etc is a K-linear map with a Leibniz rule, i.e ∂fg = (∂f)(g) +
(−1)pf(∂g),f, g being in a ( left) graded module over K for this di�er-
entiation, where f is assumed to have been assigned a integer n ∈ Z
called the degree ( order) of f. The set of graded derivations over K is
denoted derK

Z2
. 47

De�nition 4.4. The derivations over a point over K are the restriction
of derK

Z2
to a assumed ( left) submodule of nill degree and denoted by

derK.

Example 4.1. derK ≡ g, g being a Lie algebra over K, then ∂ :=
adea , a ∈ {1, · · · , dimK(g)} spanning the Lie algebra is an example of a
derivation over K.

46This seems slightly restrictive, however a famous theorem of Arthur Stone
states that a metric (topological, topology induced by the metric) space is neces-
saraly paracompact. We hall mostly be interested in metric spaces in this thesis.

47For further information on supermathematics I would like to recommend
Y.Manin's 'Complex Geometry and Gauge Field Theory' or Dan Freed's lecture
notes on ditto subject.
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Example 4.2. The BRST operator s acting on a fermionic ghost su-
peralgebra is an example of a graded derivation acting on a graded
module. The degree of an element ω in this algebra is then p=f+g ,
with p the fermion number of ω and g the ghost number of ω.

De�nition 4.5. A (graded, super )tangent space TXK,( TXK
Z2
), over

K over a point belonging to a (smooth) (graded, super) manifold X
is the set of di�erentiations over K acting on the di�erentiable K-
valued (graded, super) functions over this point, i.e TXK ≡ derK(X)
or TXK

Z2
≡ derK

Z2
(X).

De�nition 4.6. A cotangent (graded, super) space is the dual of a
(graded, super )tangent space.

De�nition 4.7. A Riemannian manifold is a manifold with a met-
ric(in the sense of an non-degenerate positive inner product, see above)
de�ned over the tangent space of each point. Such a manifold is also
called proper Riemannian.

Example 4.3. Let X be a semisimple Lie group. Then X is a manifold
and the Killing form hab = −Tr(adeaadeb

) de�nes a non-degenerate
positive de�nite metric h over each point.

Example 4.4. Let X be an in�nite dimensional hermitian manifold,
say for example an assumed direct sum space of fermionic states times
gauge boson states on a �xed space-time background. Let A be this space
of gauge boson states, G the gauge group and A/G a gauge slice. Let
f be a map between X and C. Let us make X Banach for the sake of
the argument. Upon de�ning the Frechet di�erntial Df of a map f as a
linear endomorphism of tangent spaces that satis�es

f(x+ h)− f(x) = Df(h) + o(|h|)

for an arbitrary �xed x ∈ X we see, locally splitting D = δ + s +
sV

T ∗A/G, δ being an extension of the exterior derivative acting on the
fermionic exterior cotangent space ( by acting trivially on the rest and
as usual on the fermionic cotangent space), s being the BRST operator
and the last operator acting on the exterior cotangent gauge slice that
the superalgebra can be interpreted as a gigantic exterior algebra above
a point in X. The above operator split handles then much the same
as the Dolbeault ∂, ∂̄-operator split of complex analysis, in particular
0 = s2 = δ2 = [s, δ]+. The above is an important example and , upon
taking the sum TX with the dual bundle one obtaines a bundle over X
with �bre being the candidate for generalization of a symplectic manifold
in �nite dimensions. For the moment we su�ce to note that a direct
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sum of the laplacian and square Dirac operator would be a candidate
metric on X in the obvious way by (not necessarily positive ) hermicity.

X

TpX

p

The constituents that will make up R, namely X and the union of tangent spaces over all points
( modulo obvious identifications) previous to tensoring with the dual bundle.

Figure 3. The manifold X together with a tangent
space over a point p. Such tangent spaces and their
duals are used to construct the double dual bundle
R = TX⊕T ∗X. The relevance to physics is that physical
Lagrangians are usually exterior powers of objects in R.
If we change X to be only space-time itself R has a canon-
ical generalization of the exterior derivative called the
Dirac operator de�ned on it. Conversely we can de�ne
similar operators in the in�nite-dimensional case-Linked
to the Schwinger functional di�rentiation representation
of the canonical Fock space formalism of quantum �eld
theory.

De�nition 4.8. A pseudoriemannian (hermitian) manifold of signa-
ture (p,s) is a manifold where the metric h, viewed as a matrix, over
each point can be set( by a change of basis and/or coordinates) (spec-
trally ) into the form h =

⊕
α∈I+ 1α −

⊕
α∈I− 1α, I+, I− being index

sets. p,s are then the cardinality of I+, I− respectively.
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4.2. Complex Geometry. In this subsection we shall de�ne the ba-
sic concepts of complex geometry, which rest upon the foundations of
several complex variables we previously have to some part encountered.

De�nition 4.9. A complex topological manifold X is a Hausdor� para-
compact topological space locally homeomorphic to Cn in the topology
given by the identi�cation Cn ∼= E2n.

Just as in the real case there is another type of manifolds with
stronger requirements that we shall preferably use;

De�nition 4.10. A holomorphic complex manifold is a topological
complex manifold together with an open cover {Uα}α∈I , I an index set,
of X. To each of these Uα one de�nes a local holomorphic homemor-
phism φα : Uα → φ(Uα) ⊂ Cn and requires the composition tαβ = φαφ

−1
β

∀α, β;Uα ∩ Uβ 6= ∅ to be a biholomorphism.

De�nition 4.11. A pseudohermitian complex manifold is a manifold
with a pseudohermitian metric of some signature according to de�nition
4.8.

4.3. Quaternionic, Octonionic and Hyperoctonionic Geome-
try. The de�nitions of quaternionic, octonionic and hyperoctonionic
manifolds closely parallells the de�nitions of complex analytic ( holo-
morphic) 48 manifolds. For reasons of ease we shall choose an analytic
prescription.

De�nition 4.12. A map shall be called K-analytic if it's local power
series expansion only involves powers of the K-holomorphic coordinate
and constant coe�cients in K.

De�nitions of quaternionic, octonionic and hyperoctonionic mani-
folds now follow by more or less replacing the word holomorphic with
K-analytic in the previous subsection. Never the less we might want to
also have a holomorphic/ non-holomorphic prescription at times, this
then is de�ned by annihilation by ∂ or ∂̄ in such cases. We de�ne
analytic manifolds for later use;

De�nition 4.13. A topological hypermanifold is a Hausdor� topologi-
cal space locally homeomorphic to M a hyperspace.

De�nition 4.14. A analytic hypermanifold X is a paracompact topo-
logical hypermanifold together with an open cover {Uα}; X ⊂ ∪Uα. To
each of these Uα one associates a homeomorphism φα : Uα 7→ φα(Uα)
and requires the composition φαφ

−1
β to be hyperanalytic.

48This is essentially the same for the complex case by the theorems of pluricom-
plex analysis and the local character of the de�nitions involved.
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We will some time abuse language and call the part looking locally
as M1 a hypermanifold. Indeed we shall at times identify space-time
with M1 turning it into a hypermanifold in this latter abusive sense in
a development bearing resemblence to supergeometry.

4.4. Noncommutative geometry. Noncommutative geometry can
be interpreted in two ways a priori distinct; In the way mentioned in
this thesis and in Alain Connes way. Indeed the word hypergeometry
was �rst invented to avoid confusion with noncommutative geometry.
For Alain Connes treatment we refer the reader to his book Noncom-
mutative Geometry, which however has more the character of a review
than a traditional book of mathematics. Hypergeometry was in part
developed to provide the gap between ordinary di�erential geometry
and what Alain Connes calls 'noncommutative geometry'. In physics
noncommutative geometry in the sense of Connes is to some extent
already implicit in the Heisenberg picture, e.g. in this vein an analy-
sis by N.Seiberg an E. Witten completed by the summer 1999 shows
that noncommutative Yang-Mills theory is equivalent to usual Yang-
Mills theory with higher dimensional correction terms included for a
number of scenarios. This does not, however, diminish the interesting
perspective allowd by noncommutative algebraic geometry( See below
for deformations of isospectral sets).

4.5. ( Spectral) Hypergeometry. Spectral hypergeometry will be
what we are doing in this thesis in the mathematical part. Spectral
means that we are looking at individual objects in hypercat egories
rather that the entire category itself, or that we are looking at a (prime)
ideal in an algebra when taking an algebraic perspective. This proce-
dure, beginning with a local study and then do a global study in a
hypercategory is in congruence with mathematical convention and tra-
dition.

4.5.1. Physical Interconnection and Relevance. The use of the word
'spectral' is by us thought to approximately coincide with the 'spec-
tral' of noncommuative geometry, although this is but a conjecture
at this point. In the physical parts we see more that endorces this
suspicion as determinant homomorphism of a C*-algebra generating
isospectral sets of partial di�erential operator, which in the canonical
case can be viewed as smooth varieties with complex analytic complex-
i�cation. This brings a nice perspective of noncommutative varieties
and their determinant morphisms as isospectral level sets, the isospec-
tral sets correspnding to 'space'( the 3 in a D3-brane) in space-time,
with the Morse theory of these isospectral sets giving �uctuations of
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spatial topology, and restrainted cobordisms to 4 corresponding to a
type of D-brane Feynman diagrams. This has similar higher and lower
dimensional analogues and leads e.g. to phenomena like diconnected
spaces connecting and disconnecting at di�erent time instances. A di-
rect summand of N such space-times, identifed with D3-branes, taking
string geometry tensor coe�cents in various representations of gauge
groups such as U(Nc), is then supposed to correspond to our world,
N being the number of particles, Nc some arbitrary number of colors.
The di�erent stringy space-times in the product are supposed to be
roughly independent due to reduction of parallel transport/holonomy
and other physical e�ects. The appropriate mathematization of this
thought, however, cannot be seriously or meticulously undertaken in
this thesis, but is physically addressed in the physical part.

4.6. The Geometry of Fibre Bundles and Sheaves. In this sec-
tion we shall de�ne the notions of bundles and sheaves. For smooth
bundles we refer the reader to Choq. et al. Analysis, Manifolds and
Physics while for sheaves we refer to either L.Ahlfors, Complex Anal-
ysis, or L. Hormander, An introduction to Complex Analysis in Sev-
eral Variables. Since we will not investigate hyperbundles (i.e with
hyperstructure respecting transiton functions) we will not need more
de�nitions than the ones used in those books.

4.7. Geometry of Projective (Hyper)Spaces.

De�nition 4.15. Let M be a module ( in the group theoretic sense,
i.e a domain for left/right action of a representation of a group-for
example a group itself is a module for the same group.) for a group G.
We call the space Mn+1/G,n ∈ Z , equivalent elements being elements
that are in the same orbit, the projective space of order n of M over G
and denote it by GPn(M).

It is common to avoid pathology and achieve clearness by omission
of the origin in M, when such an origin is well de�ned, previous to
taking the quotient-especially on vector space dittos.

Example 4.5. Some examples occur so often that we shall use a short-
hand notation. Set M = {R,C,H,O, Cl(p, s), · · · , }. Then, upon omis-
sion of the origin and taking respective quotients of the multiplicative
left actions, we get
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RP n = (Rn ∼ {0})/R,
CP n = (Cn ∼ {0})/C,
HP n = (Hn ∼ {0})/H,
OP n = (On ∼ {0})/O,
ClP n(p, s) = (Cl(p, s)n ∼ {0})/Cl(p, s),

All of these projective spaces except the real ones are called hyperpro-
jective spaces.

Example 4.6. Grassmannians and homogenous spaces. Note, as an
example of the latter, that topologically S3 ∼= SU(2) and we have a
group isomorphism SU(2)/SO(3) = Z2, actually since SO(3) follows
from identi�cation of opposite points on S3 we have a homemorphism
RP3 ∼= SO(3).

Example 4.7. This example is from gauge �eld theory and quantum
geometry in theoretical physics. In theoretical physics the experimen-
tal predictions emanate from an inner product on a Hilbert space that
gives upon taking the square absolute value the probablity( density) for
something to occur. Naturally the group of isometries of such a Hilbert
space, often constructed as the tensor product of Hilbert spaces, leaves
the physical predictions, emanating as they are from the inner prod-
uct, invariant. Also, the eigenvalue corresponding to a speci�c state
vector is invariant under assumption of commutativity with the Hamil-
tonian49-these two facts lead to a projectivity in physics in a sense that
we shall try to explain below by considering some cases. Let us investi-
gate the space of physically di�erent states for some cases. Let us �rst
investigate a spin-1/2 system-we would like to construct a state moduli
consisting of physically inequivalent states Mod(H) of the correspond-
ing Hilbert space H. We know that it is described by the Hilbert space
C2 with the inner product < z, ζ >=

∑
z̄aζ

a, z, ζ ∈ C2 with canonical
complex Euclidean coordinates. It is obvious that any states di�ering
by a complex scalar will upon renormaliztion represent the same state,
for example the pure eigenvectors represent physically the same thing
under a multiplication by a complex scalar. Hence we quotient out the
complex rays through the origin in C2 and obtain

Mod(H) = CP1

49Or equivalent statements in terms of generalized BRST cohomology/ Charge
or current operators/ Baitlin-Vilikovsky formalism or functional supercohomology.

59



50 Now for the generic situation of theoretical physics( for example
quantum electrodynamics) we also have to take into account that we
have an antifermion, thus H = C4 and we have a helicity state moduli

Mod(H) = CP3

-the famous CP3 of Penrose. In much the same manner one quotients
out bigger groups-for example global/local gauge groups like

SL(2,C), U(1), SU(2), SU(3), Diff(X), Conf(X), Biholo(X)

, X a manifold,51. The most common examples of such non-trivial ex-
amples of state modulis of quantum states are the gauge modulis of
Q.F.T and the moduli space of a �xed Riemann surface of some genus
and punctures in string theory- general quantum (hyper) geometry gen-
eralizes this and o�ers more interesting examples with a wide variety
of phenomenology.

We would like to make sense of the majority of these projective spaces
as manifolds. Here is a �rst theorem in this direction;

Theorem 4.1. A (hyper)projective space of real, complex, quaternionic,
octonionic type has the corresponding (hyper)structure and can thus be
viewed as a (hyper)manifold of the corresponding type.

Proof. Proof proceeds by explicit construction. De�ne an open cover
of GPn(M) by the sets {Uα}α∈I , I = {0, · · · , n}(n ∈ Z) an index set,
Uα = {z = (z0, · · · , cn) ∈ Mn+1; zα 6= 0}. Calling these z homogenous
coordinates we now de�ne inhomogenous coordinates ζ(α) on each Uα

by ζ(α) = z−1
α (z0, · · · , ẑα, · · · , zn), hat meaning omission. It is obvious

that this division is well-de�ned, since x−1 = x̄/||x||2 and ||x|| 6= 0 ∀x ∈
A;x 6= 0, A being some arbitrary choice in the family {R,C,H,O}.
Transition functions are now seen to be

tαβ = (ζ(β)
α )−1(ζ

(β)
0 , · · · , ζ(β)

α−1, 1, ζ
(β)
α+1, · · · , ζ(β)

n )

clearly being (hyper)holomorphic on their domain.
�

50It is by the way interesting to note that the above corresponds to either forward
I+ or backward I− causal in�nity in space-time. One way of obtaining the second
from the �rst is to to do a complex conjugation on the relevant Hilbert space which
goes down to ditto on the state moduli.

51In physics we call a transformation global if it is made by a constant section
of a principal bundle on a physical Hilbert space. If this section is not constant we
call the transformation local.
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5. Projective Holomorphic Metrics in Hypermathematics

In this section we shall brie�y get aquainted with the concept of a
projective holomorphic metric, or a PM-metric.
It should at once be said that a projective holomorphic metric is not

a metric, at least not in the usual sense.

De�nition 5.1. A projective holomorphic metric is a map < ., . >:
V× V→M ,V a module over M;

(1) < aφ, ψ >= 1
a
< φ,ψ >, ψ ∈ V, φ ∈ V , a ∈M.

(2) < φ,ψ >=< φ,ψ > a.

Upon integration a projective holomorphic metric induces a metric
on functions spaces over Hypermanifolds Xg by either one of the formu-
las< ψ(ζ), φ(ζ) >=

∫
ψ(ζ)−1φ(ζ)dζ

ζ
or< ψ(ζ), φ(ζ) >=

∫
ψ(ζ)−1φ(ζ)dζ

n̄

ζn

over appropriate contours encirceling a point and some �xed conven-
tion concerning the ordering. Just like ordinary metrics it seems that
projective holomorphic metrics induce ON-expansions. Please notice
that the holomorphic norm ||.||2 =< ., . > need not be real valued.
The following example will hopefully explain some of the inspiration

for these ideas and names:

Example 5.1. Let f be a holomorphic function on a neighbourhood
of the origin in C. Then it can be expanded in a holomorphic basis
according to

f =
∑
n ∈ N

< zn, f > zn =
∑
n ∈ N

1

2πi
(

∫
γ z

n+1
f(z)dz))zn.

Example 5.2. To obtain a duality on a complex number of unit mod-
ulus eiθ, θ ∈ R, one can either use the common duality: eiθ = e−iθ or
the holomorphic duality (eiθ)−1 = e−iθ.

The name holomorphic duality is inherited because of the natural in-
terpretation of re�ecting something into in�nity as the duality. Hence
one can get a righthanded phase by re�ecting at the boundary of the
unit circle to get something with a lefthanded phase, a projective prop-
erty in some sense-this also re�ects in the Euclidean norm changing
to the inverse by the duality, also the duality corresponds to changing
the origin 0 to in�nity in P 1M-another reason for the name projective
holomorphic metric.
We will unfortunately not have much more space to go into the in-

teresting properties of these metrics, which seem to be linked to topics
like the Radon-Penrose transform and residue pairings and be the nat-
ural ancestors from which some twistor theory transforms drive their
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existance. Perhaps the most joyful thing to sum up about these �met-
rics� is that they give us the virtues of a metric without using any
non-holomorphic components.
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6. Moduli Spaces of Hypermanifolds

We shall brie�y in this section mention the concept of a moduli space
of a M1-hypermanifold, i.e a M-hypermanifold where we are only look-
ing at the M1 part locally. Let Xg be a �xed such manifold with hy-
pertopology g. LetMg be a contractible ball in the space of metrics of
the manifold, and let BiholoM(Xg) be the space of biholomorphisms52.
We then de�ne the hypermoduli space ModM(Xg) as

ModM//(Xg) =Mg/BiholoM(Xg)

and Teichmuller space as TeichM(Xg) = Mg/Biholo
0
M(Xg). Teich-

muller space is a covering space of the moduli and is related to the
moduli as an often discrete �bration over the moduli. This �bration is
pathological at branch points that have to be omitted. The road that
we shall take will go through a mix of elliptic operator theory, analyti-
cal index theory and a generalization of a trick from string theory. We
shall only be concerned with versions and kins of the compact case for
simplicity.
Let us denote the space of hyperholomorphic tensors with n con-

travariant andm covariant indices overXg, T (n,m)(Xg) = T (n,m)−(Xg),
and the corresponding hypermoduli space

ModM(Xg)// = T (n,m)(Xg)/Biholo
M(Xg)

and similarly

TeichM, (n,m)(Xg) = T (n,m)(Xg)/Biholo
M(Xg)

We shall in the following interchangebly use ∂/ −
53 and ∇. The �rst

thing we would like to prove is

Theorem 6.1.

TeichM
(n,m)(Xg) = ker(∇∗∇|(n,m))

Proof. The proof rests on two lemmas and a corollary.

Lemma 6.1.

T ∗BiholoM∗ ⊂ Ran∇⊕Ran∇∗

52It is common to supress hyper to make language easier on us.
53Please do not confuse this with the lefthanded part of the Dirac operator. The

present object means the lefthanded part of the exterior derivative /connection on
Xg. In hypergeometry lefthanded objects are holomorphic, just as in string theory.
The present convention adhers to Polchinskis de�nitions in his books String Theory
I and II, and is the generalization to heterotic p-branes, one of the incarnations that
hypergeometries take.
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Proof. Let f : Xg 7→ f(Xg) be a biholomorphism and T a tensor over
Xg. Then f ∗T is given in components by (f ∗T )νµ = T ν

′

µ′ ∂/ −µf/
µ′

− (∂/ −µ

f/ )−1, ν
ν′ mod[M,M] with µ, ν and their primes hyperholomorphic mul-

tiindices. The commutator indicates that one in general has to di�er
between left and right tensor indices and that the above ordering only
holds up to commutation. Letting δBT be the biholomorphic part of
the variation we then get
∂B

δf/ κ
+
T νµ = T νµ′ [∂/ −µ1δ

µ′1
κ ∂/ −µ2f/

µ′2 · · · ∂/ −µmf/
µ′m(∂/ −µf/ )−1, ν

ν′ + perm+ · · ·
] mod[M,M] = { integration by parts }
= ∂/ −µ1T

ν
µ′δ

µ′1
κ ∂/ −µ2f/

µ′2 · · · ∂/ −µmf/
µ′m(∂/ −µf/ )−1, ν

ν′ + perm+ · · ·
Since the omitted part only, upon partial integration, includes more
terms in ran Ran∂/ − ⊕ Ranf/ ∗

− we are done by noting that partial
integration does not change the cohomology class.

�

Lemma 6.2.
T ∗BiholoM∗ ⊃ Ran∇⊕Ran∇∗

Proof. Proof proceeds by contradiction. Assume f : Xg 7→ Xg is a
di�eomorphism but not a biholomorphism. Then falls

f∗T
= f∗

∑
holomorphic indices aν1,··· ,νn

µ1,µ2,··· ,µmπνµ(∂ν1 ⊗ · · · ∂νn ⊗ dxµ1 ⊗ dxµm)
=
∑

holomorphic indices aν1,··· ,νn
µ1,µ2,··· ,µmπνµ((∂ν1f

σ1)∂σ1 ⊗ · · · (∂νnfσn)∂σn ⊗ (∂f)−1, µ1
ρ1 dxρ1

⊗(∂f)−1, µ1
ρm dxρm) + f∗

∑
holomorphic indices aν1,··· ,νn

µ1,µ2,··· ,µmπνµ(∂ν1 ⊗ · · · ∂νn ⊗ dxµ1 ⊗ dxµm)
+

∑
non−holomorphic indices︸ ︷︷ ︸

6=0

aν1,··· ,νn
µ1,µ2,··· ,µmπνµ((∂ν1f

σ1)∂σ1 ⊗ · · · (∂νnfσn)∂σn ⊗ (∂f)−1, µ1
ρ1 dxρ1

⊗(∂f)−1, µ1
ρm dxρm) .

Since ⊗ is not singular we have δT /∈ Ran∇⊕Ran∇∗.
�

Corollary 6.1. (1)

T ∗BiholoM∗ = Ran∇⊕Ran∇∗

(2)
TeichM

(n,m)(Xg) = ker(∇∗∇|(n,m))

Proof. 1) is trivial in view of the preceding two lemmas and 2) falls from
the orthogonal Hodge decomposition T (n,m)− = Ran∇ ⊕ Ran∇∗ ⊕
ker(∇∗∇). �

�
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Thus we have reduced the problem of calculating the dimension of
(n,m)-tensor Teichmuller space to calculating the index of the sequence
S;

i ∇ i
{0} 7→ T (n,m)− 7→ T (n,m+ 1)− 7→ {0}

and thus the Atiyah-Singer theorem gives on compact54 real d-dimensional
hypermanifolds of arbitrary hyperdimension, say h,

Corollary 6.2 (The Hyperreal Riemann-Roch Theorem.). Let Xg a hy-
permanifold be compact, then

dimM(TeichM
(n,m)(Xg))

= (−1)
d(d+1)

2 {Ch(T−XM n ⊗ T−∗XM m)(1− ch(T ∗))Td(TX
M)

e(TX) }[Xg]

is the dimension of the Teichmuller space of (n,m)-tensors on Xg.

Substracting p punctures from Xg we realize that the dimension in-
creases with ph since the hyperdimension of the space of punctures is
ph. Thus we have a new theorem

Theorem 6.2 (The Hyperreal Riemann-Roch Theorem.). Let Xg a hy-
permanifold be compact up to p punctures and of hyperdimension h,
then

dimM(TeichM
(n,m)(Xg))

= (−1)
d(d+1)

2 {Ch(T−XM n ⊗ T−∗XM m)(1− ch(T ∗))Td(TX
M)

e(TX) }[Xg] + ph

is the dimension of the Teichmuller space of (n,m)-tensors on Xg.

To conclude we would like to give an example of an application of
the above.

Example 6.1. We shall calculate the dimension of the moduli space of
metrics on a Riemann surface Σg, one of the classical moduli spaces.
We take the more general road of deriving a classical Riemann-Roch
theorem to do this. Restricting the above formulae to nill punctures
and complex one-dimensional hypermanifolds we obtain

dimC(TeichC
(n,m)(Σg))

= (−1)
d(d+1)

2 {Ch(T−XM n ⊗ T−∗XM m)(1− ch(T ∗))Td(TX
M)

e(TX)
}[Σg]

We notice that in terms of Chern classes

54A compact manifold has no boundary and is therefore also called closed.
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(1) Ch(T−XM n⊗T−∗XM m) = (1+c1)
n(1−c1)m = (1+(n−m)c1).

(2) 1− ch(T ∗) = c1.
(3) Td(TX) = 1 + 1

2
c1.

(4) e(TM) = c1.

Hence not forgetting (−1)
d(d+1)

2 |d=2 = −1 we have

dimC(TeichC
(n,m)(Σg))

= −(1 + (n−m)c1)(1 + 1
2
c1)[Σg]

= −((n−m) + 1
2
)c1[Σg] = (2(n−m) + 1)(g − 1)

Thus we conclude that( setting n − m = −2 and taking into account
that dimensionalities have to be either positive or nill) for the Teic-
muller space of covariant two-tensors over a Riemann surface we have
dimC(TeichC(Σg) = 3g − 3 for g ≥ 1.

7. Hypertopology

During a brief period when I was studying elementary several com-
plex variables, complex geometry and topology I often wondered about
the existance of some non-real generalization of ordinary real topol-
ogy. The reader who has read the elementary cohomology section
has already encountered such a candidate: ∂̄-cohomology. However
∂̄-cohomology deals with smooth di�erential forms and exterior alge-
bras and only indirectly with complex spaces themselves.
Perhaps the easiest way to understand what we are looking for is

to formulate it as a search for duals of ∂̄-cohomology-to put it a bit
more precisely we are searching for a duality between exact sequences
of spaces and dittos of exterior forms on space.
We shall begin with a remarkable theorem, where we shall give the

chain group over a space the structure of a Hibert space. Upon that
we shall have the foundational material to de�ne several objects and
obtain our goal, our hypertopology.

Theorem 7.1. Let C(X,K) be the homology ring of X over a �eld K.
Then C(X,K) can, up to a completion under a norm, be made into a
Hibert space for X equipped with a volume measure.

Proof. We have for ω ∈ C(X,K), η ∈ C(X,K) a product ω ∧ ∗η
de�ned as follows; ∧ is K-bilinear de�ned on a homology basis gen-
erated by simplical complexes < µ1, · · · , µp >,< ν1, · · · , νq >, by
< µ1 > ∧ < µ2 >=< µ1, µ2 >, · · · or in general manner < µ1, · · · , µp >
∧ < ν1, · · · , νq >=< µ1, · · · , µp, ν1, · · · , νq >. We then de�ne ∗ as
follows; Supressing brackets ∗ : Cq 7→ Cd − q; ∗µ1 ∧ µ2 ∧ · · ·µp =
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sgn(π(µ1, · · · , µp))µp−1 ∧ · · ·µn. Then pick a volume measure εX55.
Our inner productis then de�ned by

< ω, η >=

∫
ω̄∧∗η

εX

the bar indicating �eld duality in K. That C is a vector space over
K is obvious, with elements consisting of chains modulo equivalence
classes with respect to integration with measure εX , i.e to clarify ω = η
i�
∫
|ω−η|2 εX =

∫
(ω−η)∧∗(ω−η) εX = 0. It then comes down to prove

(1) < ., . > is a (graded) inner product.
(2) ||.|| = √< ., . > is complete.

Lemma 7.1. Statement 1.

Proof. We �rst prove a graded conjugation rule,

< ω, η > = (−1)(deg(η)+deg(ω)) deg(ω) < ∗η, ∗ω >

, d the dimension of X. We can assume our volume measure to be
real for simplicity( This need not be the case in general, but a simple
renormalization of the homology basis resolves this issue.), then

< ω, η >=
∫
ω∧∗η εX

=
∫
ω∧∗η εX =

∫
(−1)deg∗(η) deg(ω)∗η̄∧ω̄ εX

= (−1)deg∗(η) deg(ω)
∫
∗η̄∧ω̄ εX

= (−1)deg∗(η) deg(ω)(−1)deg∗(ω) deg(ω)
∫
∗η̄∧∗∗ω̄ εX

= (−1)(deg∗(η)+deg∗(ω)) deg(ω)
∫
∗η̄∧∗∗ω̄ εX

= (−1)(d−deg(η)+d−deg(ω))deg(ω) < ∗η, ∗ω >
= (−1)(deg(η)+deg(ω))deg(ω) < ∗η, ∗ω >

consisting a proof of a graded conjugation rule for the inner product.
< ., . > is obviously bilinear. Ass. ω ∧ ∗ω 6= 0 in measure, then
||ω||2 = 0 by def., hence ω = 0 ⇒ ||ω|| = 0. Conversely ||ω|| =
0 ⇒ ||ω||2 = 0 implies ω to be nill by de�nition of nullity. Note
that the Cauchy-Schwarz inequality holds for the above product from
quite general considerations of linear algebra. Thus �nally ||ω+ η||2 =
||ω||2 + ||η||2+ < ω, η > + < η, ω >≤ (||ω|| + ||η||)2 by the Cauchy-
Schwarz inequality implies ||ω + η|| ≤ ||ω||+ ||η|| .

�

Lemma 7.2. Statement 2

55The author uses the notation ε for the volume form since it is, of course, the
same thing as the Levi-Cevita tensor.
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Proof. De�ning C(X,K) to be it's completion C̄ under the norm above
we are done. �

�

Let us recollect what we have proved; If we de�ne the chain group to
be the completion in the above sense under the above norm topology
we have a Hilbert space. Note how the above parallels Hilbert spaces of
say smooth forms, and that we are really abusing language when calling
CK a Hilbert ring, rather we are dealing with equivalence classes under
a norm, in a way reminicent to abusing language when saying that L2-
spaces consist of Lebesgue square integrable functions.
We now make a slight detour and introduce the notation used in this

'hypertopology'. We shall introduce the concept needed heuristically;
Perhaps the simplest way is to again think of dual spaces. So what we
could perhaps do is think of the ∂̄-cohomology and then try to think
about how we might construct a dual. A natural guess in this context
is to create 'holomorphic' vertices-hypervertices- as the simplices one
is using. Just as in the case of hyperanalysis/geometry there are two
di�erent generalizations of ∂̄-cohomology to the hypercomplex case;
The dual holomorphic/non-real cohomology and the anti-holomorphic
cohomology.

Example 7.1. Dual non-real cohomology is generated by the ∂̄i =
dζ̄ i∂i

ζ̄
, i holomorphic or non-holomorphic, operators on a left module(

Remember that we �x things a priori to mean either left or right dif-
ferentiation. That means that we have a left theory and a right theory.
It is not a priori trivial that these two theories coincide in terms of

information-indeed it might not be so.), usually
∧(p1,p2,...,pn)(X,K), pi

anti-holomorphic indices for i 6= 1. Thus to take a concrete example f
a bihyperholomorphism would generate an exterior algebra isomorpism
of the sequence below corresponding to dual non-real cohomology on Xg

a hypermanifold X with hypertopology g 56;

56This notation derives it raison d'étre from the fact that we are actually looking
at di�erential operators acting on entire structural cathegories. We then envisage
objects to be linear superpositions of objects in the category-when we have a struc-
tural category formed of the space of linear superpositions of objects with �xed
structural topology we then get a diagonal action-a spectral action. This represen-
tation of the category is called the spectral representation. Structural categories
are Hilbert spaces in the obvious way( direct sum of objects)- when we do quantum
theory later on this will be most useful-it is for this reason that we want to make
the reader accustomed to this way of thinking.
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C∞(f(Xg), K) � O(f(Xg))

∼=

∂̄ ∂̄ ∂̄ ∂̄

{0} → Λ(p1,p2,··· ,pn)(f(Xg), K) → Λ(p1+1̄,p2,··· ,pn,)(f(Xg), K) → · · · →
f∗ ↓ f∗ ↓ f∗ ↓

∂̄ ∂̄ ∂̄ ∂̄

{0} → Λ(p1,p2,··· ,pn)(Xg, K) → Λ(p1+1̄,p2,··· ,pn,)(Xg, K), → · · · →

∼=

C∞(Xg, K) � O(Xg)

There is another cohomological theory, equally, or perhaps even of

greater interest, namely the one for the ∂ operator acting on
∧(p1,p2,...,pn)(Xg,K).

Thus we again have that f ∈ BiholoK(Xg) would generate an algebra
isomorphism for the below sequence corresponding to hyperholomorphic
cohomology

C∞(f(Xg), K) � O(f(Xg))

∼=

∂ ∂ ∂ ∂

{0} → Λ(p1,p2,··· ,pn)(f(Xg), K) → Λ(p1+1,p2,··· ,pn,)(f(Xg), K) → · · · →
f∗ ↓ f∗ ↓ f∗ ↓

∂ ∂ ∂ ∂

{0} → Λ(p1,p2,··· ,pn)(Xg, K) → Λ(p1+1,p2,··· ,pn,)(Xg, K), → · · · → Λ

∼=

C∞(Xg, K) � O(Xg)

One can of course obtain a totally holomorphic theory by only con-
sidering holomorphic exterior algebra modules. This corresponds to the
dual of the right lower diagonal of the Hodge diamond for the com-
plex case. The general hyperdiamond is a multidimensional lattice of
(co)homology groups/ hyperhodge numbers. Finally we would like to
point out that one can always consider the usual antiholomorphic, not
dual, ∂̄-operator theory, ∂̄ =

∑
a not holomorphic dζ

a∂a.

In much the same manner we have a dual construction of hyperho-
mology groups. It is this interesting object which shall to some extent
elucidate the structure of complex spaces to us. Thus one forms a
split of the boundary operator ∂ = ∂ + ∂̄ into holomorphic and an-
tiholomorphic part and obtains a homological theory by letting the
holomorphic boundary operator act only on holomorphic indices and
the antiholomorphic on antiholomorphic. Notice that for the case of
C the antiholomorphic operator and dual holomorphic operators coin-
cide. The new operators satisfy the usual graded Leibniz rules and are
in particular exact as 0 = (∂ + ∂̄)2 = ∂2 + ∂̄2 + {∂, ∂̄} shows (also, by
the way, implying 0 = {∂, ∂̄}).
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Excercise 7.1. Prove that ∂ satis�es a graded Leibniz rule.

Let us take an example of the abstract constructions encountered so
far.

Example 7.2. We shall calculate the complex holomorphic hyperho-
mology groups of CP 1. We have holomorphic/antiholomorphic gen-
erators( vertices) {µ1, µ2, µ̄1, µ̄2} and a cell complex K generated by∧
{µ1, µ2, µ̄1, µ̄2} and some relations among them. We �rst calculate

H∂(0,0)(X,C). Thus we have to compute ker(∂) = Z∂(0,0)(CP 1,C). By
0 = ∂(aµ1+bµ2),∀(a, b) ∈ C2 maximally57 we get C2 = Z∂(0,0)(CP 1,C).
Thus B∂(0,0)(CP 1,C) = Ran(∂|V(1,0)) = ∂(aµ1 ∧ µ2) = a(µ2 − µ1) ∼= C
gives H∂(0,0)(X,C) = Z∂(0,0)(CP 1,C)/B∂(0,0)(CP 1,C) = C2/C = C.
Next we note Z∂(1,0)(CP 1,C) ∼= {0} by 0 = ∂aµ1 ∧ µ2 = a(µ2 − µ1)⇒
a = 0, thus H∂(1,0)(X,C) ∼= {0}. Next we compute Z∂(1,1)(CP 1,C).
We have 0 = ∂aµ1 ∧ µ2 ∧ µ̄1 ∧ µ̄2 = a(µ2 − µ1) ∧ µ̄1 ∧ µ̄2. In-
teresting as it is the latter need not imply a = 0-this is realized as
follows-the form spanning the volume element is equivalent to nill since
0 = (∂+ ∂̄)µ1∧µ2∧ µ̄1∧ µ̄2 = (µ2−µ1)∧ µ̄1∧ µ̄2+µ1∧µ2∧(µ̄2− µ̄1) and
module properties imply this upon identi�cation of terms. The above
gives that all of C(1,1) lies in the kernel of ∂ , hence Z∂(1,1)(CP 1,C) ∼=
C. As for the relevant boundary group we notice C(2,0) ≡ {0}, thus
B∂(1,1)(CP 1,C) ∼= {0}, and so H∂(0,0)(X,C) = C/{0} ∼= C falls. The
remaining group H(0,1) is now easily computed by noting that exterior
multiplication with antiholomrphic vertices (anti)commutes with holo-
morphic exterior di�rentiation and that no special relations hold there,
thus H(0,1)

∼= {0}. We can collect and display the hypertopological data
as follows

(H∂(p,q)(CP 1,C)) =

 C
{0} {0}

C


in analogy with the Hodge diamond. Actully, using deRham duality

and the �eld duality we directly obtain as a consequence the result for
∂̄-cohomology as follows;

(H
(p,q)

∂̄
(CP 1,C)) =

 C
{0} {0}

C


Excercise 7.2. Find the complex holomorphic hyperhomology groups
for CP n.

57∂ ignores antiholomorphic simplices.
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We shall, just to show some non-trivial aspect of these theories, calcu-
late the right quaternion holomorphic hyperhomologyH∂R, (p1,p2,p3,p4)(HP 1,H)
of the �rst quaternionic projective space.

Example 7.3. Set ∂ := ∂R. Since Z∂, 0(HP 1,M) ∼= H follows from
∂H = 0 and ∂aσ1 = 0, a ∈ H, σ1 the generator of the holomorphic chain
group( we have that ∂ ignores the non-holomorphic chains), we have
H∂R, 0(HP 1,H) ∼= M. Poincare duality gives then H∂R, (1,1,1,1)(HP 1,H) ∼=
M. For the other groups we note that we have an orthogonal decompo-
sition of corresponding chain groups, hence after some non-trivial work
one can prove Hp(HP 1,H) ∼=

⊕
p=|α|H∂R, α(HP 1,H), α a muliindex.

Triviality of Hp(HP 1,H) p 6= 0, 4 now implies that the remaining hy-
perhomology groups are trivial.
To sum up:

H∂R, 0(HP 1,H) ∼= M,
H∂R, (1,1,1,1)(HP 1,H) ∼= M,
H∂R, α(HP 1,H), |α| 6= 0, 4.
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8. Integral Representations of Hyperanalysis II

Now that we have gained a little bit of knowledge about the general
structure of hypermathematics we shall revisit integral representations,
in particular constructing some far-reaching but simple generalizations.
Three formulas shall be presented

(1) A formal integral representation with holomorphic kernal of a
holomorphic function on compact domains of Cn. Notice that
the Shilov boundary of collections of sets with the same di-
mension might be objects of di�erent dimensions, hence this is
highly non-trivial58.

(2) An integral representation on product submanifolds M = I ×
M ⊂ Xg of Xg a smooth manifold, I ∼= [0, 1] for real cases.

(3) An integral representation on a family of conformal equivalences
of submanifolds Mt ⊂ M = I ×M ⊂ Xg, t ∈ I, Xg a smooth
manifold.

De�nition 8.1. A formal integral representation in the present sense
is a map from the homology Hilbert ring C times its dual to a �eld, al-
gebra, ring etc of functions over a �eld, ring or other suitable algebraic
structure K, i.e pointwise a map I : C × C∗ 7→ K.

Then

Theorem 8.1. Let Ω be arbitrary and compact in Cn. Then ∃ a formal
integral representation on a Ω with holomorphic kernal for holomorphic
f ∈ O(Ω). The formal integration domain is contained in the usual
boundary of Ω.

Proof. We can use cubes Ci as basis chains, then on Ci Cauchys poly-
disc theorem provides us with

f(z) =
1

(2πi)|n|

∫
∂+Ci

dζn︸︷︷︸
εX

f(ζ)

(ζ − z)n
, z ∈ Ci.

∂+ being the holomorphic boundary operator and zero otherwise. Hence
for z ∈

∑
Ci, Ci ∩ Cj = ∅, i 6= j we get

f(z) =
1

(2πi)|n|

∫
P
∂+Ci

dζn︸︷︷︸
εX

f(ζ)

(ζ − z)n
, z ∈

∑
Ci.

thus pick a sequence of families {Ci}σ of families of such chains
indexed by σ that exhausts Ω from the enterior with index sets Iσ, then

58Thanks goes to O. Stormark of the mathematics department of the Royal
Institute of Technology, Stockholm, Sweden, for pointing this out to me.
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by completeness we get, de�ng an extension ∂+Ω by linearity our result
by completeness of C, setting ∂+Ω = lim ∂+

∑
σ C

σ
i = lim

∑
σ ∂+C

σ
i .

I now claim the existance of this limit.

Lemma 8.1. Let the topology on C be the one inherited by it's Hilbert
space structure. Then the above limit exists, i.e lim

∑
σ ∂+C

σ
i ∃.

Proof. It su�ces to note with µ the corresponding Lebesgue volume
from εX that

||Ω−
∑

Iσ ∂+C
σ
i ||2

=
∫

(Ω−
P

Iσ ∂+Cσ
i )∗(Ω−

P
Iσ ∂+Cσ

i )
εX

= µ(Ω−
∑

Iσ ∂+C
σ
i )

which by exhaustion from the interior will tend to nill as σ goes to
in�nity, since null sets are de�ned to be in the nill equivalence class of
our Hilbert space. �

�

We would like to point out directly to the reader that s/he can in fa-
vorable cases use our hypertopology to compute the holomorphic pseu-
doboundary directly in an algebraic manner. In the pluricomplex case
other, more function-theoretic, ways are known, indeed a combination
seems to be the most e�ective way.
We now move on to the next theorem.

De�nition 8.2. A hyperhomotopy of (hyper)manifolds M is a struc-
tural isomorphism of a cylinder M × I, M a hypermanifold, I = D1

the appropriate hyperdisc.

Example 8.1. For the real case a hyperdisc is the interval, for complex
case it is the unit disc in the complex plane, and for quaternionic case
it is the real 4-dimensional closed ball of unit radius around the origin.

Sometimes we abuse language and say homotopy for contraction,
with contractible meaning homotopic to a point (See Novikov et al.,
Modern Geometry III).

De�nition 8.3. A hyperhomotopy is called centered at a point q of an
embedding space if it can contract a manifold to the point q, with the
origin in the corresponding homotopy disc corresponding to this point.

Fix f to be real analytic or/and smooth depending on circumstances.

Theorem 8.2. Let M ⊂ Xg be a smooth hyperhomotopy of closed
commutative (pseudo-)Riemannian hypermanifolds centered at q ∈ Xg,
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and g = diag(1, hqt ) a metric on X with hqt a metric on M
q
t , t the corre-

sponding value on the homotopy hyperdisc D. Then for < M q
0+,

1√
hq

t

εMq
0+
>6=

0, with ∂ denoting the exterior di�erentiation operator holomorphically
normal to the manifolds, i.e ∂ = dt∂t for the right choice and ∂ = ∂tdt
for the left,

f(0+, q) = [< ∂Mq, f(t, p) 1√
hq

t (t,p)
∗ dt >

− < Mq, (∂f(t, p)) 1√
hq

t (t,p)
∗ dt >] 1

<M×∂D0+,
1√
h

q
t

∗dt>

Remark: Please note the parentheses at the last line around ∂f .

Proof. Let DR be the hyperdisc of radius R.

L.S. =< ∂Mq, f(t, p) 1√
hq

t (t,p)
∗ dt >

=< M × (I ∼ DR), d f(t, p) 1√
hq

t (t,p)
∗ dt >

+ < ∂(M ×DR), f(t, p) 1√
hq

t (t,p)
∗ dt >

=< M × (I ∼ DR), (∂f(t, p)) 1√
hq

t (t,p)
∗ dt >

+ < M × ∂DR, f(t, p) 1√
hq

t (t,p)
∗ dt >

= {R 7→ 0}
=< M, (∂f(t, p)) 1√

hq
t (t,p)

∗ dt >
+f(0+, q) < M × ∂D0+,

1√
hq

t (t,p)
∗ dt >

Where we in the second line noted Stoke's theorem, in the second
that

(1) The quotient 1√
hq

t (t,p)
∗ dt is a constant di�erential and hence

lies in the kernel of the exterior derivative.
(2) That the resulting expression contains the commutative Hodge-

DeRham inner product and thus projects df onto its holomor-
phic part ∂f .

In the last line we noted that the only thing in the integrand of the last
expression that depends on any coordinate is the function f itself. �

Notice that we have all of a sudden a new tool that permits us to
calculate and prove very general results. There is a possible general-
ization of this result which deals with the case where the deformation
retract is not singular which we shall not go into in this thesis, but is
virtually the same as above with the soul exception that q is then on
a submanifold of X, of which some variations have been considered by
Grothendieck and others as a consequence of some deep work in residue
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theory. The proof is essentially the same as above but with the origin
of the hyperdisc replaced with this retract rather than the point above.

Excercise 8.1. Prove this theorem.

Of course there are many special cases of this theorem holding un-
der weaker circumstances. The Cauchy integral formula, Martinelli-
Bochner and the below theorem on conformal equivalences are exam-
ples.

Theorem 8.3. Let M = M × I be a family of conformal equivalences
of smooth pseudo-Riemannian real manifolds parametrized by t ∈ I =
[0, 1], with metrics ht = e2σh0, h0 the metric corresponding to t = 0 .
Then with d the dimension of M we have

f(0+, q) = [< ∂Mq, f(t, p) 1
edσ ∗ dt >

− < Mq, (∂f(t, p)) 1
edσ ∗ dt >] 1

<M×∂I0+,∗dt>

Proof. Repeating the argument from the last theorem and noting that
the quotient

1

edσ
∗ dt

lies in the kernel of the exterior derivative d since it does not depend
on t and that any exterior di�erential other than dt would annihilate
∗dt we are done. �

We remark that the weaker

Corollary 8.1. Under the assumptions of the previous theorem

f(0+, q) = [< ∂Mq, f(t, p) 1
edσ ∗ dt >

− < Mq, (df(t, p)) 1
edσ ∗ dt >] 1

<M×∂I0+,∗dt>

holds.

Example 8.2. We would like to show one small application of the
previous theorem. Set f = ∂tu and everything to be smooth. Using
f ∗ dt = ∗∂u we easily see df ∗ dt = (−1)s ∗ ∗d ∗ ∂u = (−1)s+1 ∗ d∗du,
where we noted that < M × I, ∂̄ω >=< (∂M)︸ ︷︷ ︸

=∅

×I, ω >= 0 for arbitrary

smooth ω and closed M . Hence we can write for u ∈ C(M,R)

∂tu = [< ∂Mq,
1
edσ ∗ ∂u >

− < Mq, (−1)s+1 1
edσ ∗�u >] 1

<M×∂I0+,∗dt>

which upon integration yields for (t, x) ∈ I ×M
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u(t, x) = u//ker(∂) +
∫ t

[< ∂Mq,
1
edσ ∗ ∂u >

− < Mq,
(−1)s+1

edσ ∗�u >] 1
<M×∂I0+,∗dt>

9. Linear PDE and Congruences of Vector Fields.

Often we learn in analysis to look upon solutions of di�erential equa-
tions in one variable as �ows of vector �elds. In this section we shall
similarly look upon the solutions of PDE's as �ows of vector �elds. We
will return to this point when considering the evolution of D-branes in
physics.
We begin as usual with a theorem.

Theorem 9.1. Let M be a complex manifold and M the corresponding
cylinder M × B1

C,ε ⊂ C, with this latter ball of radius ε ∈ R+ small
enough. Let the analytic PDE with analytic Cauchy data

Pu = J,
u|M ,
∂tu|M ,
· · · ∂qt u|M .

q = deg(P ) set to be the degree of P as a linear di�erential operator
in t over the ring of di�erential operators with constant coe�cients on
M, be given, in such a way that M is not charecteristic in the sense
of Cauchy-Kovalevskaja w.r.t the operator P . Then the above equation
has a real analytic solution that can be written

u =
∑
IJ

aIJλ
IeλOJuI + P−1J

on this cylinder, uI = ∂qt u|M being the I:th Cauchy data with P under-
stood to act 'projectively' on the quotient of it's domain and it's kernel
and λ ∈ B1

C,ε a complex transversal parameter. In case the coe�cents
are all holomorphic operators on M, the solution above is holomorphic.

Sketch of Proof: The proof presents quite an arduous task in it's
thorough version. Since it is not hard, just technical, we only sketch
it. Cauchy-Kovalevskaja's theorem gives existance of an analytic so-
lution. As for the rest, since M is analytic it is smoothly embeddable
in R4dimC(M), extending by the nill extension from this cylinder to the
total of this embedding space we get a distribution by using a partition
of unity. Inverting P via canonical Fourier theory we obtain an inverse
P−1J . Solving the PDE taking the negative of this solution as Cauchy
data with no source term we now have a new inverse P−1J that will not
a�ect the boundary value data by addition with the former. Letting our
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operator act on the Fourier representation of the boundary value data,
we see that we a have a polynomial in the Fourier space coordinates
of the manifold P (∂t) = fa(∂t)

a = 0 as the equation de�ning the solu-
tions, with coe�cents fa being polynomials in the Fourier coordinates.
Hence in the Fourier space of the 'homotopy' ball above the solutions
are spectrally represented as lying as a discrete singular �bration over
the Fourier space of the manifold, with possible branching points of
lower dimension inducing singularities and conversely. Taking this into
account when taking the transition back we obtain our solution in the
general form above since this latter polynomial would split locally as
0 = Π(ζ(ω)− ∂t) in the Fourier space at zero's of minimal mutipicity,
ω coordinates in the Fourier space of the manifold, hence making ex-
plicit construction of the kernel possible as the direct sum of factors,
with ζ(ω)i = ∂t holding on each subkernel, thus we obtain the solution
via exponentiation by linearity. When zero's are of higher order in the
Fourier space of the ball a simple argument shows that the introducing
a polynomial coe�cient in front of the exponential corresponding to
the appropriate factor of the same order as the order of the zero suf-
�ces to correct this. The proof consists then of tying together all the
loose ends above, such as various existances, and then showing that
the solution is analytic by an application of Payley-Weiner's theorem
or some other device.

�
The interesting thing about this theorem is that it displays the solu-

tions in a way that reveals some of the dynamics involved and in doing
so connects to [generalized] Lie �ows in a very direct way.

10. Modular Identification of Tangent Spaces.

It is well known that the exponential map over a proper Riemannian
manifold Xg generates a local homeomorphism between the an open
subset of the tangent and an open subset of the manifold. For physi-
cal reasons, linked to general quantum �eld theory, pseudodi�erential
operator theory and symplectic geometry, we wish to extend this. For
compact homogenous spaces a similar construction is well known, we
give here another construction similar in nature.

Theorem 10.1. Let Xg be an orientable proper Riemannian manifold
with trivial zeroth monodromy b0(Xg) = 1, then

TpXg/ ∼∼= Xg

∼ being the equivalence generated by having the same exponential ac-
tion, with the quotient being regarded as a the metric topological space
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induced by

dTpXg/∼(v, v′) = dXg(exp(v), exp(v
′)), v, v′ ∈ TpXg/ ∼

the latter being the usual geodesic distance between two points.

Notice that injectivity is trivial, likewise bicontinuity above. Hence
surjectivity remains, which falls from work by Hopf, Rinow and Kobayashi
and is outside of the scope of this thesis.

11. Twistor Solutions to Some Equations of M. Physics.

The following is an exerpt from a talk held as course work in a
graduate course in several complex variable theory. It aims at giving a
modest aquaintance with some perspectives in twistor geometry. The
references cited at the end should be consulted for further information
concerning these topics.

11.1. Some Facts of Twistor Geometry.

11.1.1. The Ingredients. The ingredients of twistor geometry( in this
talk) are geometric to their nature. T ∼= C4 is called Twistor space and
from it we obtain F, our �ag manifold

F = {Si ⊂ T;S1 ⊂ S2}

Si subspaces of dimension i. M is then de�ned to be the Grassmannian
G2,4(C) = G2(C4) and called Minkowski space-time; it has dimension
4. Similarly P is de�ned to be the third projective space. By this one
obtains a double �bration

P←− F −→M

with projections µ : F → P,ν : F → M and calles the correpondence
c = µν−1 the Klein correspondence. The image of a set under c is
denoted by a hat ·̂ and the image under c−1 is denoted by a tilde ·̃,
similarly the inverse image under any projection by a prime ′.

11.1.2. Examples of Isomorphisms. One of the main objectives of the
twistor program has beeen to establish isomorphisms between various
cohomology groups and spaces of solutions to partial di�erential equa-
tions. The isomorphism between these spaces is called the Penrose
transform and denoted P . In the following section we list some theo-
rems exemplifying this.
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Theorem 11.1. Let U be in the topology of M, and assume n ≥ 1,
then under condition of trivial �berwise monodromy for µ : U ′ 7→ Û

P : H1(Û ,O(−n− 2)) 7→ Γ(U,Z ′n)
is a natural isomorphism, Û = c(U) = µν−1 the image of U under the
Klein corrspondence c belonging to the double �bration above.

Proof is found in Ward and Wells 1990 for example.

Theorem 11.2 (Gindikin, Henkin 1978, Eastwood 1981.). There is an
isomorphism

H(0,1)(D+,O(−2)) 7→ Sol(�ijF (Z) = 0, Z ∈ S+)

D+ a 1-linear concave domain of CP 3, S+, M+ Stein,

�ij =
∂2

∂ui∂vj
− ∂2

∂uj∂vi
Z = (u, v) ∈ S+.

Notice that conditions of simple monodromy hide in the Stein prop-
erty this time. There are also similar results for ∂̄ equation with a
source term which under a Penrose transform map to a inhomogenous
Laplace equation on M.

11.1.3. Solutions in Terms of Contour Integrals. The Penrose program
originated as solutions to some PDE's via contour integrals. Say we
want to solve ∇AA′φA′···C′ = 0 for the massless free �eld case, i.e when
∇AA′ = ∂aσ

aAA′ . Let f be holomorphic on a relevant subset of T and
use [ωA, πA′ ] as a coordinate on the image of this subset as viewed
in F mapped on P. Let x be a point in M = MI . De�ne g(x, π) =
f(ixAA

′
π′A, π

′
A) = f(ωA(x), πA′). Then for n-helicity �elds φ over space-

time

φA′···C′(x) =
1

2πi

∫
γ

πA′ · · ·πC′g(xd, πD′)∆π

∆π = πE′dπ
E′ , γ a closed contour in the projective line determined

by the Klein correspondence x̂ of a point x in complexi�ed Minkowski
space-time M, is a solution. This can be explicitly checked by using
∇AA′g = iπA

′ ∂
∂ωAf obtained by using the chain rule. Similarly for the

negative helicity case −n

φA···C =
1

2πi

∫
γ

∂

∂ωA
· · · ∂

∂ωC
g(xd, πD′)∆π

with f of homogenous degree n in ω.
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12. Physical Applications

In this section we shall discuss the physics of hypermathematics-It
will turn out to embrace perhaps all of physical theory. Hypermathe-
matics has been in the background of physical thinking, but most often
attacked by real local methods, at least as a simplifyer�e.g. the the-
ory of elliptic functions and spinning tops�,more or less since the day
elementary classical mechanics with associated mechanics was born.
It is no wonder that Leibniz is reported to have stated `The complex
numbers are the airy �ight of God's spirit.'.
Equally old is the idea of using non-real methods to solve real prob-

lems, albeit seldom implemented in practice. Hitchin may attack in-
tegrable systems on line bundles on Riemann surfaces although not
many physicists know sheaf theory, or realize what the Riemann sur-
face might correspond to physically( e.g a generalized complexi�ed time
interval). Liouville's theorem not only means that an entire bounded
function on the complex Argand plane is a constant but also means
the conservation of volume in phase-space, this because Liouville was
active in both areas. Legendre, Bessel, Gauss, Riemann etc were all
active in complex function theory and mathematical physics-some of
them founded important parts of these sciences-but they were also into
mechanics and suchlike. This does not, however, imply that physicists
in the practical subsciences of physics that follow them today think of
physics in a non-real manner.
It is common knowledge the lefthanded side of the Dirac operator

on Euclidean space-time is a quaternionic Cauchy-Riemann operator.
Yet it used to be uncommon to investigate the spinor bundle(on which
the operator acts) as a quaternion holomorphic bundle over a quater-
nionic base. This is very strange from a string theoretic perspective,
as it is well known that supersymmetry arguments or the Einstein �eld
equation naturally yield hyperkahler space-time in a number of situ-
ations. Thus everybody knows that an on-shell space-time satisfying
some physicality conditions is hyperkahler but it is not common to treat
it as such, e.g., a natural and intrinsic quaternionic 4-fold. Perhaps
some of motivation for this is that one often seeks to look at o�-shell
space-times in physics, and that hypercomplex theories are often very
restrainted, with quite small moduli. Another� very good�issue is
that this might not simplify treatment, and that the e�ort learning
such a theory might not be worth the gain.
More to the defence of the critics of such a programme; It must be

said that it is not a priori trivial which hypercomplex theory to use, and
such theories are not well developed presently-or at least not commonly

81



in use. On the other hand when used such attempts often imply that
di�erent complex continuations, that make little mathmatical sense,
have to be used in order to get the physical situation of Minkowskian
space-time. Thus we see that the critique of such an extremist program
is more than well motivated.
In the opinion of the present author this is best tackled in the obvious

way� by using general methods in general circumstances and viewing
hypercomplex theries as a mere bonus that can be used in the few
cases where there is anything to gain by such a formulation. Since the
hyperkahler case is very common as a suitable background this leads
to a nice setting in which one can change picture at convinence. We
shall see, later in the physical part, that we will be rewarded for our
open minded perspective, and that this will unravel some interconnec-
tions between noncommutative geometry in various settings and string
theory.
LetX be manifold and look on the Whitney sum �bration TX⊕T ∗X.

Using a a basis {i(eA−eA∗) = γa} on the selfadjoint59 part of the �ber,
{eA} a basis of sections on T ∗X, we see that, recognizing that the �ber
over a point of our �bration is the classical phase-space, we have a
natural way of constructing Cli�ord algbras. To put it simply, if we
use the tangent of a manifold as a local chart over a contractible set(
e.g matrix Lie groups when exponentiating and using coordinates on
the tangent group manifold to describe elements in the group.) and
then tensor with the dual to get the product of canonical coordinates
times canonical momenta. Notice that a momentum then lives in the
cotangent �ber and a canonical position in the tangent.
We can easily see that this is so on the basis of other considerations.

Here is one example of two di�erent such considerations.

(1) Notice that the kernal of the Fourier transform is eipX . If X was
picked a point on the manifold there would be no inner prod-
uct to pair it with the mometum p. Hence this expression is ill
de�ned. But letting X be a tangent vector the above is well de-
�ned if we let p be a covector or a vector. The whole expression
is a Lorentz scalar, so pX has to be invariant under the Lorentz
group since the Lorentz group has continuous action and hence
cannot map to pX to pX + 2πn for maps close to the identity,
n a non-zero integer. But setting the usual inner product and

59The real antiselfadjoint part corresponds to the usual representation of SO(n)
upon projecting out the imaginary part, n the dimension of X, while the imaginary
antiselfadjoint part to the spinor representation. See GSW II.
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picking a one-dimensional case, we see that a Lorentz transfor-
mation that induces a contraction x′ =

√
1− v2x has to induce

the transformation p′ = 1√
1−v2p. Thus whatever p is it is in

the dual of the space that X is in. But when doing automor-
phisms of the underlying base we know very well that tangent
spaces will have a covariant functor induced on them, namely
the Jacobian of the relevant map locally. Hence it is clear that
X has to be a vector, otherwise it would not transform as it
does under the Lorentz group.

(2) Elementary quantum mechanics teaches us that pµψ = i∂µψ.
60.

This object is obviously a covector, just like pψ = idψ. Notice
that the operator involved is a vector.

Please notice the existance of a symmetry. Although the above takes
p to be a covector it does so because of conventions. We could equally
well have picked things the other way around, indeed all of quantum
theory has symmetry, which is takes guises such as supersymmetry.
With the above conventions follow also the rule of having a passive
Wigner rotations and maps.
.

12.1. Classical Physics in Terms of Symplectic and Complex
Manifolds. As mentioned at the start of the previous section we clas-
sical physics can be described in terms of symplectic manifolds. If this
symplectic structure would be integrable, which is equivalent to van-
ishing of the Nijenhuis tensor �eld or that the holomorphic vector �elds
form a Lie algebra under the Lie bracket, the symplectic manifold in
question is also a complex manifold.

12.2. Several Complex Variables in QFT. More or less from the
start in the early 30's of quantum theory the complex numbers have
been associated with the quantum world. Indeed it is impossible to
account for some of the dynamics of quantum mechanical systems, like
way function interference, without the use of at least complex numbers
up to isomorphism.
Perhaps the simplest and earliest examples of pluricomplex theory

being used in practice is quantum �eld theory are the phenomena of
Wick rotation and complex angular momentum. Wick rotation stems
from various pathologies connected to integration of Green's function
in Minkowskian space-time and the cure of Wick was to continue to
Euclidean space-time, evaluate integrals, and then go back to non-
Euclidean space-time, in e�ect implementing a little mini-renormalization

60This is the timelike convention.
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already at the start of computations. This has led to some literature
on several complex variables in quantum �eld theory to motivate this
continuation of the amplitudes during the 50's and 70's. In a similar
vein complexi�ed treatment of the group SL(2,C) grew under the same
time under the perhaps slightly misleading concept of complex angular
momentum in some parts of elementary particle physics, i.e a rotation
of angle α around an axis corresponds to the boost of imaginary rapid-
ity iα in the direction of this axis modulo a sign due to a coincidence
of representation theory in the spin cover, spin(n,m), of SO(n,m) for
the physical dimension and signature.

12.3. Yang-Mill's Theory and Complex Gauge Theory. Yang-
Mills theory is what we use to describe three out of four positively
known gauge �elds. It's basic ingredients are sections of a spinor bundle
called Dirac �elds and connections on this bundle called Yang-Mills
gauge boson �elds. Thus the spinors ψ correspond to fermions and the
connections A to bosons. A good introduction for the mathematician
is Y.Manin's 'Complex Geometry an Gauge Field Theory'. A good
introduction for the physicist is S.Weinberg's 'The Quantum Theory of
Fields I,II III'.

Example 12.1. Weak SU(2) is a part of the U(1)⊗SU(2) electroweak
theory. The spinor module is two dimensional and includes one fermion
and it's neutrino for each generation. The connections are in a 3 di-
mensional structure group extended by U(1), the dimension correspond-
ing to the 3 + 1 = 4 particles W+, W− ,Z0 and the electromagnetic
gauge boson A.

12.4. String Theory and D-branes. String theory is perhaps the
most accepted theory of quantum gravity and grand uni�cation and
has attracted the most attention hith herto. We cannot for lack of
space go into the beautiful world of strings.
We shall however note this: A real two-dimensional one-dimensional

hypermanifold is a world-sheet of a string. Left-moving is then holo-
morphic on this sheet, also called Riemann surface.
The natural generalization to more dimensions are hypermanifolds

Xg of higher real dimension,(example: quaternionic manifolds) and the
right-moving objects are then [classically] the dual manifolds X̄g. For
this reason higher dimensional hypermanifolds will also be called D-
branes.
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12.5. Spinors and Twistor Theory. By now it is hopefully clear that
all of physics has spinors written all over it. The basic fundamental ob-
ject, at our energies with our fundamental constants, and other circum-
stances we live under is after Wick rotation a holomorphic quaternionic
one-manifold with an associated holomorphic one-bein. Let us us pick
a complex symplectic representation for the holomorphic tangent space
over a point. We can then write such a vector as Z = z0 + jz1 ∈ H,
(z0, z1) ∈ C2. Thus locally we have identi�ed C2 = H. Taking the unit
sphere S3 ∼= SU(2) in H and restricting to spatial directions {i, j, k} we
get a new sphere S2 ∼= CP 1 which represents the complex rays through
the origin, i.e CP 1 ∼= S3/U(1) ∼= S3/S1 ∼= (C2 ∼ {0})/C. We also no-
tice that our original C2 was the Hilbert space for a spin half system,
so the �rst projective space could not only be interpreted as the direc-
tions from the origin of three space but also as the moduli of di�erent
helicity quantum states for such a particle. A similar construction gives
CP 3 when an antifermionic particle is included, i.e. upon taking the
direct sum of the tangent with the dual, or as the perspective of hyper-
geometry would have by taking into account the antiholomorphic( or
rightmoving/negative helicity- whichever the reader prefers.) partner.
Penroses program uses the insight that such ideas give to use these

projective spaces as the space of inequivalent states together with dou-
ble �bration techniques to solve the equations of physics. This is what
we might call an approach that attacks twistor theory in inhomoge-
neous coordinates. In later years it seems that a return to homogenous
coordinates has occured. The interested reader is referred to Ward and
Wells, Twistor Geometry and Field Theory and Penrose and Rindler,
Spinors and Space-Time I and II.
Thus twistor geometry is a particular case of hypergeometry. In the

physics chapters we shall learn about quantum hypergeometry-that
is what happens when we look at entire categories of manifolds that
locally look like spinor/twistor spaces.
Beautiful as it is these manifolds are also what we just a section ago

called D-branes.

12.6. Some Final Remarks Concerning Hypereal Methods and
Physics. Finally I would like to remark why we choose the selfadjoint
part of TPX ⊕ T ∗PX, or in even greater generality why we have real
spectra in physics.
Let us take a concrete example �rst and then generalize. We pick

the lefthanded Dirac operator ∂/ −, but this time with complexi�ed co-
ordinates. Let us forget about hypergeometry for a moment and only
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have a complexi�ed space-time as a base. Notice that the correspond-
ing span of matrices allowed is then M(2,C), the set of 2× 2 complex
matrices. Then it is easy to see that 1

i
∂/ − = mψ− has a solution

ψ = eimx/ − , x a coordinate on our complexi�ed space-time. Setting
x = (x0 + iy0, x1 + iy1, x2 + iy2, x3 + iy3), (Re(x), Im(x)) ∈ R8

+ we un-
derstand that we have di�erent evolution in di�erent directions, namely
either periodic or exponentially decaying. This is realized as follows;
for the complex time coordinate with othe others set to nill we have
for real time ψ− = eimx0 , resonant61, but for purely imaginary time we
have e−my0 , decaying. In the same manner we have evolution in purely
spatial direction x1 given by e(i)

2mx1 = e−mx1 for the real spatial co-
ordinate x1, fastly decaying (the i comes from the lefthanded Cli�ord
algebra and not from the continuation) and �elds in the imaginary spa-
tial direction y1, e−iy1 , resonant. We also notice that the typical decay
length of such a �eld is 1

m
, quite small with the Dirac mass spectra we

have (For a neutron that is about a �fth of a Fermi, for a electron 0.02
Angstrom, less than �fty times the dimension of a small atom.).
So to sum it up imaginary space is resonant together with real time.

That means that the holomorphic quadratic form x2 can be very well
approximated by x2 = x2

0− y2
1 − y2

2 − y2
3. Thus we have all of a sudden

sketchedly and very naively justi�ed two things
(1) That we have a Minkowski metric.
(2) That Wick rotation really does work and is ok even in the gen-

eral global sense from a physical point of view. Problems of
non-uniqueness still remain.
The reader that is awear of historical developments might

add from the point of view of hypergeometry/ twistor geometry
might add an arbitrary choice of items to this list, e.g

(3) That what the particle physicists of the 60's called complex
angular momentum occured in physics, i.e that we have a com-
plexi�cation SU(2)C = SL(2,C). Thus rotations are the real
parts of the complex angles that parametrize a trivial neigh-
bourhood around the identity of a complex Lie group, which
is precisely the automorphism group of the relevant tangent
�ber. Notice that the antiholomorphic/righthanded partner has
SL(2,C) that acts on it, so a direct sum bundle of the holomor-
phic and antiholomorphic partner would have automorphism
group SL(2,C)⊕ SL(2,C).

61A dimension where operator �elds or similar objects have almost free evolution
is here temporarily called resonant. Thus the imaginary time dimension is resonant
in Minkowski space-time with the above conventions.
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(4) A possible link to the success of holomorphic geometry and com-
plexifed space-time in various parts of mathematical physics,
e.g. twistor theory.

Of course it must be realized that we really have not accomplished
much in terms of uniqueness matters etc, since the correct way of look-
ing at our objects would be to to start with the complex thing and
then obtain the real space as an approximation.
We must now scrutinize our arguments and �nd possible objections

that one might have against them that might ruin them. Here are two
objections we must deal with

(1) The above was an argument for free �elds. What about inter-
acting �elds?

(2) What about x /∈ R8
+? We do seem to have exploding solutions

then.
Let us begin with the second as it seems to be the more danger-

ous objection. The answer is that we must be careful to evolve with
time and not the other way around. So if we want to look at nega-
tive coordinates we must be careful to conjugate/ take negative mass,
depending on which operation we choose to do, to get the backwards
moving objects in di�erent dimensions. Of course taking negative mass
and negative coordinate at the same time means that the way function
looks the same, so if we stick to only having our positive time coor-
dinate this implies we only have positive mass by identifying the case
with two minus signs with the former.
The �rst objection on the other hand is very easy to answer for a

physicist. The pertubated solutions are so close to free �elds asymptot-
ically that we can without problems assume that they are free to run
a qualitative argument. Indeed as any physicist who knows his path
integrals knows the approximation of �elds being almost free is quite ok
for most cases and almost necessary in order to get anything out of his
expressions, often using the Euler canonical product formula and the
spectrum of the free d'Alembertian, essentially reducing space-time to
a torus in the periodic dimensions. Much the same reasoning explains
why we have real spectra in physics, namely the states corresponding
to non-real eigenvalues of di�erent operators are decaying.
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13. Solving Some Equations of Mathematical Physics

Using Hyperreal Methods.

Use ψ for a complex �eld satisfying the Dirac equation and Φ, u for
complex and real �elds satisfying only the D'Alembert-Laplace equa-
tion. Let Ω be a compact contractible subset of En, n ∈ Z+, with C1

recti�able boundary.

13.1. Dimension 2 of Arbitrary Signature. We shall in this sec-
tion solve the Dirac and D'Alembert-Laplace equation for various cases,
beginning with the Dirac equation and then taking the Laplace equa-
tion. Assume everything to be real analytic and di�erentiable enough
throughout these sections, and then interpret the integral operators
obtained to act on completions of spaces. For E2 we use Cl+(2, 0) ∼= C,
and thus Cauchy-Fantappie's formula yields

ψ(z) =
1

2πi
[< ∂Ω,

ψdζ

ζ − z
> − < Ω,

∂̄ψdζ

ζ − z
>] , z ∈ Ω.

which takes care of the Dirac equation for such cases, noting ∂/ + =
2∂z̄. Notice that compatibility requirements have to be satis�ed among
boundary value, source term, and the equation and that these cannot
be arbitrarily prescribed. In particular for a massless ( 'Weyl') spinor
in dimension 2 we see that it would satisfy CR conditions on the space-
like hypersurface ∂Ω = Σ. By real analyticity we now obtain the other
cases R(1,1), R(0,2) via Wick rotation. This being understood we only
deal with Euclidean cases from now on ( What we are really doing is
considering PDE's on real submanifolds of complex manifolds, hence
this is justi�ed.).
Substitution then gives

∂zΦ =
1

2πi
[〈∂Ω,

∂Φ

ζ − z
〉 − 〈Ω, ∂̄∂Φ

ζ − z
〉] z ∈ Ω.

hence inverting ∂z gives us

= Φ//Ō(Ω) +
1

2πi

∫ z

[〈∂Ω,
∂Φ

ζ − z
〉 − 〈Ω, ∂̄∂Φ

ζ − z
〉]

For for a real Φ = u we obtain

u(z, z̄) = ReΦ = Φ++Φ−
2

= Re Φ//Ō(Ω)

+Re 1
2πi

∫ z
[〈∂Ω, ∂Φ

ζ−z 〉 − 〈Ω,
∂̄∂Φ
ζ−z 〉]

= 1
4π
〈∂Ω, ∗dln|ζ − z|2Φ〉+ 1

4π
[〈∂Ω,ln|ζ − z|2 ∗ dΦ〉 − 〈Ω, ln |ζ − z|2�Φ〉]

, z ∈ Ω.
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where the last line shows how this relates to the purely real kernels
(equivalence). This is not surprizing as � = 4∂̄†∂̄, duality being the
Hodge-DeRham dual, in our conventions62, hence 2iδ(ζ − z) = δ(x −
y) = �G(x, y) = −4∗̄∂̄(∗̄∂̄G(x, y)) for the relevant elementary kernal G
of the D'Alembert-Laplace operator. Notice that by the above ∂/ = i∗̄∂̄
generates another representation of the Dirac operator on the complex
cohomology algebra of this case.

13.2. Dimension 3 and More. Next for the case En, n ≥ 3, we use

�
1

kn||x− x′||d−2︸ ︷︷ ︸
K(x,x′)

= ∂/ ∂/
1

kn||x− x′||d−2︸ ︷︷ ︸
:=G(x,x′)

= δ(x − x′), kn some suitably

de�ned constant. Hence we have a Green's function for the Dirac op-
erator, and so

ψ(x) =< ∂Ω, G(x, x′)ψ(x′) > − < Ω, G(x, x′)∂/ ψ(x′) >

For the Laplace operator one uses the canonical Newton formula

Φ(x) =< ∂Ω,K(x, x′)Φ(x′) > + < ∂Ω,K(x, x′)∗dΦ(x′) > + < Ω,K(x, x′)d∗dΦ(x′) >

If one inforces C2 requirements on the solutions obtained the above
formulae are corresponding to overdetermined problems and cannot be
applied. Other kernals have then got to be sought, corresponding to
other problems like the Dirichlet or Neumann problem, varying from
region to region. For the case of dimension 4 we are lucky, here the
lefthanded Cli�ord algebra closes again, which can be used to some
extent to solve partial di�erential equations. Let the following expres-
sions be H-analytic, and let the involved solutions satisfy the regularity
condition

< ∂Ω, ψ ∗ dζ >= 0, z = t+ ix+ jy + kz

, a quaternionic version of the Morera criterion for holomorphicity. One
can then write, supressing a normalization constant,

ψ(x) =< ∂Ω, ψ∗̄∂ 1

||ζ||2
> + < ∂Ω, ∗̄∂ψ 1

||ζ||2
> − < Ω, ∗�ψ 1

||ζ||2
>

with u the real part of this. It should be pointed out that, mod-
ulo a constant, the regular function satisfying the condition above is
determined by it's real part on the boundary in a way canonical from el-
ementary complex analysis on this same boundary. The solution given
in this manner is unique.

62This di�ers by a factor of two from the more usual conventions, which are
associated with di�erent normalization of the Cauchy-Riemann operator.
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The reader might wish to consider a symplectic representation of
H ∼= C × C given by ζ = z0 + kz1, zi = xi + iyi. This thus essentially
reduces matters to smooth analysis on C2 ∼ {0}. But then the kernal
we seek is on cohomological grounds, considering

H
(0,1)

∂̄
(C2 ∼ {0}︸ ︷︷ ︸

:=X

,C) ∼= H1(X,Γ(X,
n∧
T ∗X)) ∼= H1(X,O)

, the latter isomorphisms holding in view of Dolbeault isomorphism
induced by existance of a pseudoconvex Leray cover, the Martinelli-
Bochner Kernal. An explicit check, computing ∗̄∂K(x, x′), veri�es this.
Hence we have our symplectic representation with ψ taking values in
a representation space C2 as follows

ψ(z) =

(
ψ1

ψ2

)
= 1

(2πi)2
[< ∂Ω, ψω

′(ζ̄−z̄)∧ω(ζ)
||ζ−z||4 > − < Ω, ∂̄ψω

′(ζ̄−z̄)∧ω(ζ)
||ζ−z||4 >]

yielding a third solution to the Dirac equation. By the same token,
taking quaternionic real parts, we have

u(z) = ReΦ = Re

(
Φ1

Φ2

)
=

Re 1
(2πi)2

[< ∂Ω, Φω′(ζ̄−z̄)∧ω(ζ)
||ζ−z||4 > + < ∂Ω, ∗̄∂̄Φ

||ζ−z||2 >

+ < Ω,
∗̄�∂̄Φω′(ζ̄−z̄)∧ω(ζ)

||ζ−z||4 >]

yielding another solution for the complex D'Alembert-Laplace equa-
tion �∂̄u = J with boundary value data.

13.3. Summary. Consider the lift l : PR → PM and conversely the
projection π : PM → PR, from the category of well posed problems
of the above type( which is contained in the Hadamard category ) for
the real case and hypercomplex or complex case M. The above then
amounts to commutativity of the diagram

PM −→ SM
l l π l l π
PR −→ SR

with S indicating the various solution spaces. Thus nothing is gained
by introducing hyperreal methods for the solvability of the partial dif-
ferential equations considered and nothing is lost for the Cauchy prob-
lem.
For a closely related kin of the above D'Alembert-Laplace problems,

namely the Dirichlet problem on Ω the above other formulations of
solutions can however be more practical. From the real analysis per-
spective the consderations involved su�ce to prove existance of the
Poisson kernel, via arguments linked to Perron's principle. The above
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hypercomplex methods can be used to �nd such solutions in cases where
the relevant kernal is hard to obtain via real methods. That this is so
is because of the fact that the various purely hypercomplex/complex
kernals considered are are reproducing63 for dimension 2 and 4 respec-
tively, in the sense that they create solutions to the partial di�erential
equations involved from boundary value data that need not be bordant
to a function satisfying the di�erential equation given.

Example 13.1. We physicists often encounter the equation ∇−ψ =
J with some Cauchy data. Solve it in some sense for topologically
trivial Ω in Xg. Notice that Σ = ∂Ω becomes space, and that the
data prescribed corresonds to timelike evolution of spinors in normal
direction to this surface at each point.

Example 13.2. �Solve�, in formal sense, the Klein-Gordon equation
(�+m2)ψ = J with appropriate Cauchy data and suitable requirements
on toplogically trivial Ω on an arbitrary pseudo-Riemannian background
in arbitrary dimension and signature. In particular if the equation is
for a space-time way function, what does positive mass imply for the
one-particle space-time itself?

Example 13.3. If for families of pseudo-riemannian manifolds with
�xed space-time dimension and signature there would exist 3 and only
three elliptic manifolds, how many tachyonic states would the corresond-
ing �eld theory with lagrangean L = ψ̄(iD/ )2ψ have? (Hint: Wietz.-
Bochner and a good conformal gauge slice.) Include the e�ect of de-
generacies if possible.

63The Martinelli-Bochner kernel should not be confused to be reproducing in
dimension 2 complex for usual complex functions, although it is when considered
to act on a tuple of two functions, reproducing property with respect to a hyper-
complex Cauchy-Riemann operator.
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14. Appendix; Spin Cobordisms, The Singular Cauchy

Problem, D-branes, Number Theory and Stochastic

Flows.

14.1. Spin Cobordisms and The Singular Cauchy Problem. Let
Σ be a chain, say a smooth rectifyable cycle, e.g. formed as a closed
double in the sense of partial di�erential equations on manifolds with
boundaries, and let Ω be a cobordism, i.e. ∂Ω = Σ. Despite that we
might consider Dirichlet problems we might consider other problems as
well. In this subsection we shall only consider the analytic d'Alembert-
Laplace problems of type

D/ 2Φ = 0,Φ ∈ C2(N(Σ)), Dµ = ∂
∂xµ

Φ|Σ = B.V.1,
∂nΦ|Σ = B.V.2,

, N(Σ) a small enough neighbourhood of Σ, n normal to Σ, or, if we
force the spinor Φ to be real, problems of the type
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�u = 0, u ∈ C2(N(Σ))
u|Σ = B.V.1,
∂nu|Σ = B.V.2,

Just as remarked at the last section of the mathematical part, sub-
stituting the Dirichlet problem for the Cauchy problem usually means
that one has an overdetermined system if one does not let go of twice
di�erentiability throughout Ω. Because of growth conditions implicit
with these equations much of the handy and usual spectral calculus as-
sociated with Dirichlet problems and associated physical entities, such
as D-branes, collapses, and a� possibly extended�singularity usually
arises in the middle of the cobordism. The mechanism giving both ex-
istance and singularity is easily recognized. The rough skeleton of an
argument could proceed as follows; By elementary partial di�erential
equations the analytic harmonic Dirichlet on Ω has a unique solution
hence implying a 1-1 correspondence between relevant boundary val-
ues and harmonic bordisms, but by another classical theorem (Cauchy-
Kovalevskaja) we know that that the in�nitisimally transversal Cauchy
also has a solution. As we know that a harmonic function is analytic,
we can extend it to some envelope of harmonicity in Ω. If, however,
we could always do this without obstructions then falls a contradiction,
since the space of Cauchy data is strictly larger than the space of Dirch-
let ditto. Thus in the space of Cauchy data C = D × C1,D denoting
analytic Dirichlet data and C1 the space of analytic normal derivatives,
only a diagonal D × ∂D ⊂ D × C1 can be non-singularly continued
throughout the cobordism Ω. Thus the C2(Ω) property combined with
two boundary conditions makes the problem overdetermined�Hence
one disposes of it , namely by requiring the P.D.E's to only hold in-
�tisimally transversally to Σ. As the solution by necessity is analytic
within the envelope of analyticity created by this function we will ob-
tain a �possibly rami�ed, singular etc�function u on at least the
intersection of the envelope and our relevant cobordism. It is this
problem, which goes by the name of the singular Cauchy problem, that
we shall sketchedly relate to spin cobordisms and hypermanifolds.
We can without any greater restraints illustrate the discussion in any

chiral dimension by the quaternionic case and assume the real problem
which we can always retain by decomposition. As our spectral methods
now fail, it seems we must use analytic methods instead to be able to
solve the problem at hand. We begin with the process of calculating the
various hyperimaginary parts of a holomorphism from a given harmonic
function u which we set to be the real part. To do this we can use
version of a trick in Riemann surface theory as we have hypercomplex
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structures I, J,K , hence

ui =
∫
Idu =

∫
I(∂nudn+ ∂iudx

i),
uj =

∫
Jdu =

∫
J(∂nudn+ ∂iudx

i),
· · ·

xi coordinates on Σ, which gives us our di�erent parts modulo a con-
stant. We can further concentrate on the case when Σ is a hyperplane
R3 viewed in the Euclidean context as we are merely opting to illus-
trate how this di�cult problem might be turned simple by introducing
hypercomplex calculus for this particular problem. On C we have, as
previously stated,

u = cont.(
Φ|Σ + Φ̄|σ

2
) + cont.(

∫ ζ

ζ̄

∂nΦdζ)

Σ the real axis. On H we take the problem given above, which
reduces to [D/ +, D/ −]+Φ = 0. Then, by the usual identites of Dirac
algebra, one can show that

Φ = cont.(
Φ+|Σ + Φ−|σ

2
) + Im cont.(

∫
∂nΦdζ)

Σ = R3, cont. again the continuation functor. In the above Φ is a ma-
trix valued spinor. We remark a very important feauture; what we are
really doing analysis on is, after compati�cation of the spatial directions
S3 × U , U an interval, this is important for it is linked to the special
behaviour of this problem since it is de�ned on a blow-up resolution
of the usual point-like charecteristic. E.g, in physical Minkowski space
we are thus really dealing with a partial di�erential equation transver-
sal to a lightcone, something that endows the di�erential equation on
conformal equivalences of this domain with special properties. Albeit
we cannot proceed in abstracto too easily with this, we can use hyper-
complex methods to e�ectuate the calculations needed. E.g. we have
for a general holomorphism Φ+, satisfying a holomorphicity condition
∂̄Φ = 0,

Φ+ =
∑
n∈Z

(ζnan + ζnaini+ ζnaj,nj + ζnak,nk)

The usual formulas listed in the hypermathemtics part then yield
answers in a number of the explicit cases in manner remincent to the
complex case, e.g. by using the explicit formula for regular, i.e holo-
morphic, functions. Furthermore, explicit calculations are often made
easier if there is also a trace operating on the functions involved.
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14.2. An Example of a Spin Boundary with Relations to Ana-
lytic Number Theory, Combinatorics, Theta Function Theory
and D-branes. Let S3 bound D4 the model of a topologically triv-
ial set in D4 ⊂ X

(4)
± space-times of various helicites. If we see X(4)

± a
space-time as a hypermanifold, to be more exact a hypercomplex man-
ifold, so the S3 inhertits a framing which we might regard as given by
vector�elds Yi := I, Yj := J, Yk := K satisfying

[I, J ]= K,
[J,K]= I,
[K, I]= J

which are not to be confused with the hypercomplex structures. Let the
Hamiltonian Ĥ = I2+J2+K2 be given and de�ned on S3 ∼= SU(2) this
spin boundary. We shall, en passent, display how a partition function
can have a shockingly number theoretic interpretation because of the
di�erent ways in which it can equivalently be physically written as
while casually mentioning some phenomenology of space-times, i.e D3-
branes or one-particle space-times. The thought is to invert this line of
reasoning a little bit later to be able to express the partition function
involved in a problem of mass degeneracy of super D3-branes as a
formula of analytic number theory and theta function theory. Consider
the diagonal supertrace on the Ĥ = L2 spectrum, then with β ∈ C a
parameter,q := e−β, one obtains

Z = (STRSU(2)∼=S3 [e−L
2β])−1 = (STR[qL

2

])−1 = (
∑
l∈N

(−1)l(2l+1)ql(l+1))−1

Looking at the mathematics, remembering e.g that the super angular
momentum physical system of elementary quantum mechanics it could
have represented we know by the physics of that problem that we also
can write this as the �unnormalized� partition function

Z = ΠI,m∈Z+Z
(I)
m ΠJ,m∈Z+Z

(J)
m ΠK,m∈Z+Z

(K)
m ,

Z
(I)
m = (e

Imβ
2 − e− Imβ

2 )−1 = (STRH+m⊕H−m [q
Iβ
2 ])−1

Zm being the component corresponding to the m:th eigenvalue, and
H± the eigenspaces correponding to negative and positive helicity re-
spectively. Normalizing ZI

m this is by ZI
m = (1 − qm)−1 for the m:th

eigenvalue
Z(I)
m = (1− qm)−1

Hence
Z = Πm∈Z+Z

(I)
m

3
= Πm∈Z+(1− qm)−3

The m:th eigenvalue in the I,J,K corresponds to a state that winds
n/2 times the I, J, K:th direction around S3, i.e at in�nity in the
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I,J,K:th direction if we regard R3 compacti�ed, while the m:th power
of q corresponds to the number of times a state winds around the
temporal direction, then counting the time in q-space on a circle around
the origin in the complex plane. By the above we thus have

Z = (STR[qL])−1 = (
∑
l∈N

(−1)l(2l + 1)ql(l+1))−1 = Πm∈Z+(1− qm)−3

We can interpret

ZI = Z1/3 = Πm∈Z+(1− qm)−1

statistically by expanding it (This is a classical function of combina-
torics and number theory called the canonical partition function. It
was e.g studied by Euler by function analytical methods.), hence writ-
ing ZI as a trace in a new basis. The new Hamiltonian Ĥ would have
to correspond to the charge on a stack pointed branes ∧(∗+ ∪ ∗−) cor-
responding to the spin eigenvalues ±m64, so it would be by additivity
of the charge of tensors of Hilbert spaces,

Ĥ = Q =
∑

Qi

Qi the charge Q±i = ±m
2
on the pointlike branes in charge/momentum

space. Let a prime denote an eigenvalue of an operator. Since the
vacuum was relabelled by the renormalization, to Q′

− = 0, Q′
+ = m,

this means that Ĥ = Q =
∑
Qi takes integer eigenvalues whilst Q′

i ∈
{0,m} will sum for a �xed Q′ eigenvalue in the number of ways one can
write Q′ as a sum of integers, where we only count the distinct ways
since we have identical branes(particles), and hence give the degeneracy
at each eigenvalue Q′. The number of such partitions of a Q′ are called
Euler partitions�but they were already known to the Greeks, which
knew that they followed a pentagonal series( see below). So we write,
with d(Q′) the degeneracy at eigenvalue Q′,

ZI =
∑
Q′∈N

d(Q′)qQ
′
= Πn∈Z+(1− qn)−1

with the knowledge that d(Q′) has to be the number of partitions of Q′

by this number theoretical interpetation of Q. Still β in q = e−β has

64This is nice, as this gives en example of how arbitrary branes are and the simple
perspective of a brane a spectrum, which is needed to ty things to noncommutative
geometry in Connes sense later. E.g, here we have point-like branes in a Fourier
space.
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not changed interpretation, it's a temporal non-isospectral65 deforma-
tion of the D3-brane, that is�in the present case� it is the parameter
of a non-unitary transformation on a Hilbert space H which deformes
it's pertaining operator algebra of linear vector space endomorphisms
HomC(H,H) (the term has been borrowed from �nite dimensional in-
tegrable systems). We have then

ZI =
∑

Q′∈N d(Q
′)qQ

′
= (
∑

n∈Z(−1)nq
3n2−n

2 )−1

= (1− q1 − q2 + q5 + q7 − q12 − q15 + q22 + q26 + · · · )−1

where the numbers 1, 5, · · · are the sum of vertices in nested pentagons,
one vertex larger in side, which all have three sides in common, as the
reader can explictly check, an this was known to the ancient Greeks.
Let us concentrate on the elementary number theory/combinatorics
emerging from the string �eld geometry so that we can put full weight
on the branes later. What we will have to say about the former will
not be original, rather canonical and intended to just give a standard
example for those who are not already string theorists and thus aware
of such matters. The physical intent is to touch where the mass degen-
eracy of strings resides in free �eld case and to reapply this technology
for �nding the mass spectrum for the special case of hypercomplex
D3-branes. On the latter, however, some emphasis will be laid.

14.3. Strings, Fields, Mass and Degeneracy. The partition func-
tion

ZI = Πn∈Z+(1− qn)−1 := f(q)−1

has been a much studied object in science (e.g string theory, num-
ber theory, statistical mechanics) and can be expressed by a Hardy-
Ramunjan formula. One has, by using the Dedekind eta function,
setting q = e2πit,

η(τ) = eiπτΠ∞
n=1(1− e2πinτ )

satisfying the well known modular identity

η(−1

τ
) = η(−iτ)

1
2η(τ)

65This peculiar technical term will be clear at the end of this section, see the
D-branes section. It stems from that the action generated by the Hamitonian on
our brane deforms the states over the spectrum, leaving the interpretation that it
evolves in time while not leaving the spectrum invariant. We will also give examples
of isospectral deformations of a brane. The non-isospectral behaviour is part of the
Euclidean metric, which after appropriate temporal Wick rotation is isospectral in
Minkowski space. This is the instability predicted already by heuristic methods at
the end of Part I.
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which implies (See GSW I in the references, which we lean heavily
on presently)

Z−1
I = f(q) = (

−2π

lnq
)

1
2 q

−1
24 (ζ)

1
12f(ζ2), ζ = e

2π
lnq .

In particular, this gives for q 7→ 1

f(q) ∼ const. (1− q)−
1
2 exp(− π2

6(1− q)
)

from this we can, recognizing Z(D−2)
I to be the free partition function

for bosonic strings with 2 o�-shell dimensions, e.g, recognize the bosonic
string in critical dimensionD = 26 = 2+D++D−. By usual fomulae for
Laurent series coe�cents we then the degeneracy in the mass spectrum
as, setting GD(q) = Z(q) the generating function in D = 26,

dn =
1

2πi

∫
γ

GD=26=2+D++D−(q)

qn+1
dq = Res{

GD=26=2+D++D−(q)

qn+1
, 0}

, γ a small in loop around the origin of unit monodromy 1 ∈ π1(S
1) ∼= Z

in additive notation. This can be evaluated for D = 26 for the high
mass limit, i.e large n, via e.g a saddle point evaluation as in GSW, to

dn ∼ (const.)n
−27
4 exp(4π

√
n)

or

ρ(m) = m− 25
2 exp

m

m0

,m0 =
1

4π
(α′)−1/2

We may be interested in the partition function with both super and
non-super degrees of freedom on our brane. On our S3 spin cobordant
to D4 that would have resulted by adding free super�elds to the usual
�elds, hence multiplying the usual trace by a supertrace. Hence, with
these new degrees of freedom included, we get

ZI :=
Zusual
Zsuper

= Πn∈Z+

(1 + qn)

(1− qn)
We have the theta function identity

Z−1 = θ4(0|q) = (− ln(q)

π
)−

1
2 θ2(0|e

π
ln(q) )

which on our original SU(2) ∼= S3 generated D3-brane would have
given

Z = ZIZJZK = (Πn∈Z+

(1 + qn)

(1− qn)
)3 = (θ4(0|q))−3
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So this time we used the link the other way, from number theory to
physics�to get the naive graded partition function on the spatial de-
grees of freedom on our super D3-brane. Let us now study the mass
degeneracy of our D3-brane. We begin by displaying the stringy results
in super string theory of GSW, as those are standard, and then pro-
ceed to the D3-brane, which will model a standard space-time, since
the vanishing of �elds at in�nity of R3 will make it possible for us to
smoothly compactify at in�nity without obstructing the solution spec-
trum. Adding in�nity in time as well to the future, and enforcing that
solution �elds �elds take identical values at Euclidean time-like in�nity
gives then the problem the topology D4. This becomes the same thing
as S3×S1 if we instead just identify the extra time dimension as a cir-
cle, and this corresponds to periodic boundary conditions obtained by
omitting a small closed ball B̄ε around the origin in the D4 and gluing
it's boundary with the original S3 of radius 1, and then letting ε → 0
induce direct limits on Hilbert spaces, so that we e�ectively have the
topology S1 × S3( Remark: This is under the assumption of no extra
pathology being present in this special case, something that is o� hand
hard to check without explicit calculations in both cases.)

14.4. Superstring Partition Function and Mass Spectrum in
D = 10. We have for D = 10 superstrings with e�ective on-shell di-
mension D+ +D− = 8,

ZD=10 = 16Π∞
n=1(

1 + qn

1− qn
)8 = 16θ4(0|q)−8 ∼ exp(

2π2

1− q
)

with a for the present discussion irrelevant factor 16 stemming from
additional degeneracy in string theory. And so, again isolating the
Laurent series coe�cents in the meromorphic germ around the origin
which give the degeneracy dn, one obtains for large n

dn ∼ n−
11
4 exp(π

√
8n)

or, equivalently, for large m

ρ(m) = m− 9
2 exp(

m

m0

), m0 = (π
√

8α′)−1

in a continuum description of the discrete spectrum near positive in-
�nity in mass space.

14.5. Mass Spectrum and Degeneracy of D3-branes. Finally we
can return to our scenario with the D3-branes. Now our, and above all
Hitchins (See below D3-branes/One-particle Space-times in General),
pondering about the hypercomplex structures pays o�; Because of the
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Jacobi identities we noticed, linking the partition function on the SU(2)
to the case above by, e.g,

ZS3∼=SU(2) =

∑
l∈N(2l + 1)ql(l+1)∑

l∈N(−1)l(2l + 1)ql(l+1)
= Πn∈Z+(

(1 + qn)

(1− qn)
)3

and the free state nature of de�nite mass states with no interactions
( this becomes a bound state from the �ve dimensional perspective in
the sense of an eigenvalue of the d'Alembertian), which permits us to
identify the time-like dimension to have the oscillatory topology S1,
noticing the that belonging partition function must be

ZS1 = Πn∈Z+

(1 + qn)

(1− qn)
that we can directly write down the partition function we seek for

on the appropriate S1 × S3 topology, as

Z = ZS1ZS3 = trqp
2

, p2 = −� = −∇a∇a = −(
∂

∂s

2

+Y 2
1 +Y 2

2 +Y 2
3 ) = −(∂2

0+∂
2
1+∂

2
2+∂

2
3)

where we refer the reader to the theorems of Hitchin and our con-
jectures in thesection below for the notation, and where xi are the
integrated coordinates induced by the hypercomplex structures. Hence
we obtain, including degeneracy from spin and helicity,

Z = 4Πn∈Z+(
(1 + qn)

(1− qn)
)4

which is the square root of the string partition function inD++D− =
8 on-shell dimensions or D = 10 with the two o�-shell dimensions
included, and (exactly !, even with the in fron of the product included)
what it should be from intuition and theorems on in part II and III.
This is then treated in the same manner as the various other string
�eld theory partition functions the exact result for the mass degeneracy
from our hypothesis, coinciding with the dimensionally reduced stringy
result, is

dn =
1

2πi

∫
γ

GD=D±=4(q)

qn+1
dq = Res{

GD±=4(q)

qn+1
, 0}

, Gpm = Z1
SZ

3
S. For large n, this also gives the stringy results

dn ∼ n−
5
4 exp(π

√
n)

or, equivalently, for large m
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ρ(m) = m− 3
2 exp(

m

m0

), m0 = const.

the constant cannot be foretold directly from our hypothesis, but
must be multiple of a numerical factor 4 or 1, gG =

√
4πG, and the

other natural constants.
That we, above� in the most important case�obtained an explicit

check that
ZM = ZStrings = ZX−ZX+

in the form of

ZM = 16Π∞
n=1(

1 + qn

1− qn
)8 = (4Π∞

n=1(
1 + qn

1− qn
)4)2 = Z2

X−

and thus vanishing homomorphism anomaly of the apporiate kind
(�rst) to that order, can perhaps be considered a small breakthrough in
our little program. Although we intutioned this before, and proved this
on elements of the string pertubation theory series, those proofs cannot
be said to have the clarity o�ered by the simplicity of this calculus
oriented proof. But, then again, a particular case proves nothing in
the general.

14.6. D3-branes/One-particle Space-times in General. With good
approximation at relevant backgrounds, X± are hyperkähler, that is,
they are hypercomplex space-times with their Obata connection66 pre-
serving a metric in the conformal class. If one lets the measured helicity
space-time be embedded in the stringy space-time, something that can
always be done by a special case of Whitney's theorem, we can represent
the remaining by a contractible set, this to have homotopy equivalent
topology inducing an isomorphism of the sheaf cohomological theo-
ries of the corresponding background partial di�erential operators (i.e
BRST operators), e.g free operators in the simplest case on R4, which
we often choose to compactify. One can also work with two copies of
the same space-time, as we chose to do in part III as opposed to part II,
as long as one remembers to take this into account the physical results
should not di�er�or at least have not done so so far in this thesis.
Several particles, say N , are then supposed to correspond to a stack
of N standard copies of the appropriate space-time background, which
works a little bit as a common zero level or reference point for the
various space-times. Here is a simple explanation for the reader who
wishes to understand this; Think about usual electrons in space-time,

66This is the name of a torsion-less connection that preserves the hypercomplex
structures on a hypercomplex space-time.
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they are but �elds; they can have di�erent �eld values, for they corre-
spond to di�erent particles with roughly independent physics, this by
cluster decomposition of the S-matrix. One models this by having N
di�erent position con�guration spaces, or space-times in more common
language. This does not necessarily mean that one truly does have sev-
eral space-times but that is anyway the way we model it. So we have
several space-times because we want to allow for electrons with di�er-
ent �eld values. Now, we all agree that vielbeins and connections are
but usual �elds, and we can, for the line of reasoning, say we agree that
we can interpret these �elds as particles. The values of connections and
vielbeins on a space-time can be�should be� di�erent, because after
all, they are but particle way functions. Since a space-time is minimally
and uniquely determined by it's smooth topology, it's connection and
it's ON frame(or metric, if one insists on being impractical), and both
the vielbein and connection are but usual particles, we deduce that we
must be having N di�erent copies of the smooth topology but with
di�erent connections and vielbeins in order to model the physics. So
we have a heap of space-times, because of independent geometry,� as
many as the number of particles�but with the same position spectrum.
String theory, i.e the addition of dimensions is to drop the last restraint.
The stack of branes, then, is what is called multiparticle space-time.
Let us see how a one-particle space-time looks. According to us�and
as has been checked indirectly in the mathematical literature for one
very simple but relevant case� we conjecture that the spatial sets in
a brane can, after continuation to Eucidean metric, be identi�ed with
the level sets of the determinant homomorphism det(1 + O), O ∈ A
a C∗ algebra. One can easily intutively see how that comes about,
for if we make the analytic continuation of the usual expressions to
imaginary time β it is easy to see that the the Hamiltonian H does
not generate unitary isometries of the relevant Hilbert spaces but, e.g
instead generates a scaling of determinants by the possibly ill-de�ned
determinant

det(e−2Hβ)

In the standard case, O = Qint/Q, Q the BRST charge operator, e.g
the Klein-Gordon operator Q = −k2 + m2. In the mathematical lit-
eraure, see Hitchin[1] in the references, this �gured and was proved
two years ago in his paper �Hypercomplex Manifolds and the Space of
Framings�, who was simply considering the special case of harmonic
functions as generating spatial sets and time in a hypercomplex space,
something that corresponds to Weyl(massless) fermions after reduc-
tion to halfdensities in the SYM, and the case for general m seems
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thus to be suggested, by �translation invariance� of the physical laws,
as it were, along the mass scale, if we only remember that we can write
solutions of partial di�erential equations by using partition functions
and pertaining determinants.
It would be interesting to know the behaviour of such possibly non-

hyperkahler space-times, might they be the non-vacuum states one per-
cieves/believes them to be, and if so, how many of them are tachyons?
Such answers could give further checks that truly everything �ts in the
grand hypothesis of this thesis�something that we can of course not
exhaustively check ourselves as it involves all of physics.
Traditionally the �spectral varieties� det(1+O) = c are called isospec-

tral sets for �nite dimensional operators in the context of integrable
systems (See Hitichin[2]). In the in�nite dimensional case, it can be
hard to establish any meaning to such an equation, but since we are any
way wanting information on a particular space-time this is remidied by
observing the level sets of the determinant homomorphism acting as
background partition functions usually do

u(x, t) = det(1 +O)xx′u(x
′, 0) = (

∑
+

∫
)x′∈Σdet(1 +O)xx′u(x

′, 0)

where obvious DeWitt summation, i.e integration and/or summation,
over the position spectrum Σ± 3 x′, on the chosen hypersurface at
zero time, has been explictly included. Normally to these level sets
the temporal direction evolves, with the spatial sets lying as a 3-fold
inheriting a framing from the hypercomplex 4-fold. It is easily seen
that an isometry of the relevant Hilberts space of Minkowskian �elds
in Euclidean space-time, hence with imaginary time, would deform the
determinant instead of leaving it �xed, wich would have been the case in
Minkowskian space-time. Following our mild generalization of Hitchin's
idea in his treatment, on the basis of our observation that it could have
been expressed by a determinant, and the then following conjecture in
this matter, we have the timelike di�erential as du = d det(1+O)u|∂Ω;
and the other spatial di�erentials are given by the action of the

hypercomplex structures;

η1 = Idu, η2 = Jdu, η3 = Kdu

and so one obtains the hypercomplex framing. One can see these
as the Xa

0 -embedding, which were a component in the X super�eld,
letting ω be a 1-form be dual to Xa

0 we get

ω = du+ ωIIdu+ JωJdu+KωKdu
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du
u

u
u

u

u
u

1

2

3

4

5

0

Conformal time

Spatial level sets

Figure 4. Spatial sets in a brane, as well as the de-
composition in time and space over an arbitrarily chosen
point. In this case, any of the sets ui could have been
chosen as ∂Ω the spatial spectrum at some given instant.

Which can be shown to be the most general decompostion of ω(Darboux's
theorem.). Thus our branes arem the NC geometry related to the de-
terminant homomorphism, the relevant charge operators being (see the
quantization in part II and III), Q = D+D− in the full density string
formalism, whilst usual Dirac operators apply in the halfdensity dual
SYM description. The following theorems gives the afortmentioned
support for the above

Theorem 14.1 (Hitchin 1998). Let X± be a hypercomplex 4-fold and
s a harmonic function on X±. Let ∂

∂s
be normal to s, and decompose

X = U ×M , U an interval and M a 3-fold. Then (Y1, Y2, Y3) dual to
Ids, Jds,Kds moves according to

dY1

ds
= [Y2, Y3],

dY2

ds
= [Y3, Y1],

dY3

ds
= [Y1, Y2]

and these are called Nahm's equations.

Theorem 14.2 (Hitchin 1998). Let X± be a hypercomplex manifold
generated by a framing (Y1, Y2, Y3)on a 3-fold satisfying Nahm's equa-
tions. Then X is hyperkähler i� Yi are volume preserving on the 3-folds
Ms, s ∈ U .

Lemma 14.1 (Hitchin 1998). The triple of vector �elds {Yi} satis�es
Nahm's equations i� dηi are ASD w.r.t the metric ds2 + η2

1 + η2
2 + η2

3.

Remark: As stated previously, a hypercomplex manifold is Hyper-
kahler i� the Obata connection is the Levi-Cevita connection of a met-
ric in the conformal class. The metric which these canonical vacuum
branes are Levi-Cevita with respect to is
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G = e−2u(ds2 + η2
1 + η2

2 + η2
3)

the volume form om the hypercomplex manifold is

θ0 ∧ θ1 ∧ θ2 ∧ θ3 = e−4u(ds ∧ η1 ∧ η2 ∧ η3)

and the natural�and preserved�volume form on Ms = Σ the spatial
slices is

e−2uη1 ∧ η2 ∧ η3

The fact that volume in con�guration space is conserved on-shell is
a classical theorem called Liouville's theorem. Thew above is a natural
analogue on a hyperkahler space. The statement of the last lemma is
equivalent to that the curvature is ASD to �rst order in the connec-
tion, since we recognize ω as the canonical expression for the Obata
connection

ω =

 0 θ3 −θ1

−θ3 0 θ2

θ1 −θ2 0

 = Iθ1 + Jθ2 +Kθ3

I, J,K automorphisms of the tangent �ber isomorphic to the quater-
nionic algebra imaginaries and (1,1) tensors, or, in other language,
identi�able with the hypercomplex structures I, J,K on Ms ⊂ X±.

Let us return and sum up. We draw a picture in string space-time
to make it clear;
We sum up our thoughts on the determinant homomorphism by

Conjecture 14.1 (NC-Geometry/ D-brane correspondence, �Determi-
nant Homomorphism Conjecture�). Let det : A 7→ C be the determi-
nant homomorphism from an appropriate C∗ algebra to an appropriate
�eld, here taken as C = RC. Then, after continuation to the Euclidean
region so that the unitary action of the Hamiltonian is a scaling of the
determinant instead of preserving it, we have our spatial sets induced
by varieties of the form det(O) = c, c ∈ C, where it is understood that
we act by the determinant on appropriate initial value data on a spatial
slice at some a priori given instant on a D-brane.

and this gives a natural interconnection to Morse theory that will,
up to the following mindmaps and �owcharts, end our thesis.
Remark: For the massless classical case of a scalar with only a Lapla-

cian as charge operator� which is actually precisely what our gravitons
and dilatons correspond to in this thesis�this has already been proven
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X+

X−

Wilson loops

String

Hyperkähler, on−shell

Figure 5. X± is a level surface of mass( i.e a foliation by
the Ricci instead of the dilaton) in Kaluza-Klein space-
time, X± = U± × Σ±, Σ± a level surface of time, and
det(1 + O) gives the branes at various instances. The
above corresponds to how a Wilson loop of open strings
would look like. A usual free propagating string in grav-
ity would like the opposite, with the end points in the
various space-times joining, being able to propagate arbi-
trarily in either space-time. Hence the closed dimension
and open dimension would reverse in the above picture.

(by Hitchin in the references). Otherwise the question is open. Again
we emphasize that the above includes illde�ned objects (the determi-
nants) whose cure may well prove to have some interesting e�ects on
the evolutions of branes. As an example of the above scaling behaviour,
theta functions are quasi-periodic, and they are partition functions on
a cobordism in the Euclidean plane belonging to a parabolic di�erential
equation.
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Two Theories of Gravity and the Relation to a
Third: A Generalized Maldacena

Conjecture(proof: Chiral splitting theorem of
string theory(D'Hoker, Phong)+ work that still

has to be done)
I: Dirac-YM on Y±(X±), D(Y±) = 4

Fundamental Fields: Φ super Dirac �eld, ω a spin connection with
gauge degrees of freedom, so ω := ω+A0+A1+· · · ,Ai ∈ {U(NC), SU(NC), · · · }-
connections. A 1-admissible theory, that is, a theory about worldlines.

LDirac = Φ̄∓D∓Φ±, Dirac− YM
Form Xa from ΦA

⇐
⇒II: H.E. on X±, D(X±) = 4

Fundamental Fields: Xa
± a supervector in the ON-frame, Xa

±,1 =
ea±,µdx

µ
± = ea±,µθ

µ
± a vielbein, Xa

±,0 = Xa
± a vector which gives an embed-

ding via exponentiation. ω± a connection with extra gauge degrees of
freedom. This is a 2-admissible theory, i.e a theory about worldsheets,
with �elds in X±, D(X±) = 4,

LH.E. = ∗(X∗
±D∓D±X∓), Hilbert− Einstein

Stack X+ onto X−, include a worldsheet to be able to deform mass
states. X = X

(5)
+ ×X

(5)
− = Σ×X+ ×X−, X

(5)
± now each include one

degree of freedom more than usual, as well as gauge degrees of
freedom. The extra degree of freedom is by e�ectively killed by world

sheet on-shell( BRST) conditions.

⇐
⇒III: Strings on X,D(X) = 10

Fundamental Fields: Xa a NC supervector with gauge degrees of free-
dom. This is also a 2-admissible theory, so it is a theory about world-
sheets.

L = ∗(X∗D2X), STRING/M − THEORY
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A Picture Series Of The Above;
I: SDirac-YM on Y±(X±)

π

π

Y,  SYM

Y,  SYM

D=4

D=4

Propagator

String

Propagator

X

D=10
Place on string where x  and x  coincide,
and consequently opposite Chan−Paton factors meet 
each other.

Spot where x  and   x meet at former point. Called the base point
in Part II. Has no relevance whatsoever on the string, this by translation invariance

Gives D=10 space−time with Chan−Paton factorsExample: Free string

X, H.E., D=4

I

II

III

+

−

+

−

and noncommutativity.

+

−

  on the closed field theory on the circle.

Figure 6. The points I,II and III above are the var-
tious steps and pertaining theories on the previous page.
Both the 4 dimensional space-time and the 10 dimen-
sional space-times above are noncommutative, and are
in particular hyperkähler for a variety of more or less
sensible backgrounds.
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E. B. Torbrand

Abstract. In this paper we give general principles of string �eld
theory that emanate in a proof of the Maldecena Conjecture in a
more general setting.

1. Introduction

In this paper we rederive or maybe reformulate Schwingers closed
time formalism or, equivalently, prove the Maldacena conjecture. This
also gives the proof and mechanism of dimensional reduction in string
theory through holography.

2. Main Results I

Theorem 2.1 (String �eld theory, Proof of Equivalence of Correlator
Functions I, Second Quantized Part of Theorem). Assume the outgoing
Hilbert space is complete. Then We have

< T [UγΠiXi] >=
∑
out

| < Πφ̄outj Uγ−Πφini > |2 =< Πφ̄ini Uγ+Uγ−Πiφ
in
i >

where we have de�ned X = φ̄φ, with superindices supressed.+ denotes
the part of the closed path γ that is in positive time direction and −
the opposite. We must remark that ordered product above also orders
outgoing states to the left and ingoing to the right. Here Uγ =

∫
γ
A.

Proof. In view of completeness of the outgoing Hilbert spaces and stan-
dard properties of ordered products this is so. �

Theorem 2.2 (Maldacena Theorem, Equivalence of Correlators II,
First Quantized And Last Part of Theorem). We have in a �rst quan-
tized formalism that

ln(Uγ) =

∫
γ=γ++γ−

A =

∫
Σ

(G + B)µν∂X
µ∂̄Xνdz ∧ dz̄

Thus stated equivalently a theory of wilson loops boils down to a the-
ory of closed strings since they have the same lagrangean ex second
quantization.

Proof. Using Stokes theorem for tensors(which may or may not be an-
tisymmetric) we have the theorem by pulling the two-tensor down to
a world sheet. �



Theorem 2.3 (Mechanism of Dimensional Reduction, String Field
Theory). A amplitude is given in D = 8 by taking the D+ = 4 and
D− = 4 half-density amplitudes and multiplying them. Setting X+ =
X−, that is the two di�erent space-times in the holographic factorization
to be equivalent this gives an amplitude for a full density in D = 4. O�
the mass shell we should set D− = D+ = 5 and D = 10 or D = 5.67

Proof. Since the product of the two amplitudes when they are each
others conjugates become the square norm or full density we seek we
are done. �

3. Main Results II: BRST-Cohomological Proof of

Equivalence of Moduli Space of Solutions

We shall take a given setting and the reader must then understand
that the results apply in more general situation. The important thing
is the general thought or principle and not the proof in a speci�c case.

Theorem 3.1. The solution space of D/ ψ = 0,∇·R = J is equivalent
to the solution space of (� + R/ )θ = 0,∇ · R = J . Stated equivalently
N = 1 SYM is equivalent to SUGRA after the correct identi�cation is
made. Here R = F is the curvature of the connection ω = A.

Proof. The proof is simple. Let us look at gravity �rst. By using a
standard Bochner identity of Dirac operators we have that � + R/ =
D/ 2. Inverting the dirac operator we get: D/ θ = 0. What we then
do is use θaµ = ψ̄γaTµψ. Actually γa+AB gives the components from
γa+Tµ. This is used when doing rotations or boosts of spinors in special
relativity. The standard representation of Dirac operators on spinors
gives then D/ +ψ− = 0. That we can go the other way around, proving
the converse, is obvious. As stated under the title of our thesis we use
the representation γa = ea+e∗a on space time vielbeins while using the
standard Pauli matrix representation on spinors for the Dirac operator
acting on spinors. �
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PART II: QUANTUM GRAVITY AND
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�We have a habit in writing articles published in scienti�c journals to make the work as
�nished as possible, to cover up all the tracks, to not worry about the blind alleys or
describe how you had the wrong idea �rst, and so on. So there isn�t any place to

publish, in a digni�ed manner, what you actually did in order to get to do the work.�

Nobel Lecture, 1966

�[We] ...are not pleased when we are forced to accept a mathematical truth by virtue of a
complicated chain of formal conclusions and computations, which we traverse blindly,
link by link, feeling our way by touch. We want �rst an overview of the aim and of the

road; we want to understand the idea of the proof, the deeper context.�

H. Weyl, Unterrichtsblätter für Mathematik und Naturwissenschaften, 38,
178-188(1932), translation by Abe Shenitzer in the Amercian Mathematical Monthly.

�It's conceivable, although I admit not entirely likely, that something like modern string

theory arises from a quantum �eld theory. And that would be the �nal irony.�

S.Weinberg, March 1996
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4. Introduction

The second part of this thesis concerns itself with the problem of
gravity.
Roughly, from the point of view of held in this thesis, the problem can

be subdivided into two problems; Problems associated on the one hand
to general [non-linear] quantum theory and on the other hand gravi-
tation theory itself. For this reason we have chosen to include some
material that concerns the mathematical structure of general quantum
theory, and keep it in some sense separated from gravity, since it is
more general. This material then naturally interconnects the former
part of this thesis with the second, and so brings us the idea of the
hypercomplex in �nite and in�nite dimensions in mathematics, collec-
tively termed hypermathematics- taking identical statements in terms
of Fock algebra, supermathematics, etc.
This part of this thesis is not a work of mathematics, although it

often deals with mathematical statements, and should not be regarded
as such. The reader who expects German �Thirring� proofs is looking
in the wrong place for such. Rather we are doing a blend of sugges-
tions, heuristics and proofs valid within physical standards. Thus we
are making suggestions when relevant rather than omitting, despite the
fallible nature of such mathematically [without conclusive mathemati-
cal proof] unacceptable suggestions, in order to move progress forward
in whatever extent it can be done. This is the tradition of physics,
which is what this part of this thesis deals with.

  

Gravitational theory,
which is it?

How do we resolve
the mathematical
issues?

*
Measurement theory.

Gravitational
problems

Figure 7. ∗:Not mentioned in this thesis.
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5. Defining the Problem

In order to be able to �solve� the problem of gravity, if it is solvable,
we have to subdivide it into manageable parts and de�ne them. We
must be sure that the parts are not too big and that we achieve some
certain set of beforehand de�ned goals or criteria, otherwise we might
loose ourselves in never ending academical arguments. Also, we must
be prepared to disregard the theory if we �nd it incorrect, rather than
try to save it by changing it time and time again, because then we will
likely in the end run into selfcontradictory arguments, and truly not
know precisely what the theory, or rather hypothesis, is.
We will call a theory for gravity �acceptable� if the following overlap-

ping, and admittedly quite stringent, features are present in dimension
four after possible compacti�cation etc;

• It reproduces, at least at a macroscopic level, the symmetries
we observe, in particular mass attracts mass for particles of
positive energy and a 'metric� graviton should have spin 2.
• Hilbert-Einstein gravity is it's classical limit.
• It yields sensible and �nite answers to de�nite problems of a
reasonable nature, then disregarding problems that are associ-
ated to general perturbative theory such as convergence of the
S-matrix etc. In particular the theory in question should satisfy
calculationability �in principle�, as in the usual status of particle
physics.

It should be understood directly that string theory roughly satis�es
all of the above except perhaps the last line of the last criterion.
We could consider the following as four fundamental and good ways

to check such a theory[ which of course satis�es the above requirements]
and at least start a debate from

• It reproduces the Schwarzild metric out of quantum theory, with
perturbations.
• Hawking radiation and entropy.
• Coulomb interaction and black hole scattering, together with
the crucial attractive feature.
• Good strong curvature dynamics, such as sensible pair creation
rates.

Thanks to work by Juan Maldacena in string theory, we at least
know that string theory produces Hawking entropy and radiation.
However string theory battles with some problems too, for example

extra dimensions which gives ambiguous compacti�cation. Many per-
sons have for some time had the impression that it is a little bit 'too
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general�, which makes it seem to be a little hard to wield in the ser-
vice of physical prediction in practical situations. So it might be right
but need some reformulation in various speci�c instances of M-theory.
Also, the topological situation set by the plethora of various Dp-branes
and p-branes is hard to cope with, making theory remicent to a trip to
the zoo. Finally another problem, at least if it is going to be commonly
accepted by most scientists, is that some people �nd the idea of strings
�wrong' for some metaphysical reason.
What is done in this thesis is try to remedy some of these last prob-

lems partially. However, rather than taking the string �legacy� for
granted and turning my back on the sceptics I derive it, out of �eld
theory in two di�erent ways. Once that this has been done I develop a
�eld theoretic version of string theory in which worlds and space-times
are created and annihilated, a third quantized formalism, that builds on
the links that have in recent years been seen between string theory and
Yang-Mills, among other things in connection to D-branes. This string
�eld theory, however , makes no a priori use of string theory at any
point and in particular in a systematic way gives the amplitude to any
process in way exactly equivalent to the �eld theory S-matrix picture
with operator �elds, but with a �square root� of the �uctuating space-
time diagrams corresponding to a spinorial diagram of �eld theoretic
origin. So in e�ect a singular string diagram becomes a �eld theory
diagram and conversely. As to the supposed matter of string theory
being too general, we remedy this partly by the perspective which we
obtain after having gone the long road to derive it through �eld theory,
which gives us perspective, hence, paradoxically, by putting the �too
general� in a context and generalizing further we achieve simpli�cation
since what one understands is often subjectively percieved as simpler,
although it may objectively be more complicated.
Presently, although it is clear what the amplitude for transitions

for space-times[ each space-time will correspond to a Poincare dual of
something called string based at a point, which is a point where two
Chan-Paton factors coincide, turning out to be equivalent to charge
dual Dirac point particles.] for di�erent space-times of di�erent topol-
ogy which are not generated by each other I do not know how to look
at the general situation of all backgrounds in the same matrix. Also,
I do not know how many space-time toplogies which are generated by
the S-matrix on a single background, since it also does topological op-
erations to the background when creating copies of space-times and
gluing them together in di�erent ways.
What seems to be clear to some extent is that this version of string

theory has the predictive power missing at some points of M-theory, and
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does not require extra dimensions either. Also the idea of strings as a
self-interaction of spinor �elds and space-time itself seems to be appeal-
ing, at least since it can be derived in �eld theory without prior knowl-
edge of strings which should convince some sceptics. The idea makes
contact with noncommutative spaces in a very natural way[ symplectic
manifolds and associated hypermathematics], which for �nite factors
and dimensions lead to �hypercomplex� objects and in in�nite dimen-
sions may or may not be noncommutative geometry in Connes meaning.
The blend of hyper/supermathematics[ noncommutativity], integrabil-
ity, solitons, and strings/Dp-branes/�elds , which for long have been
part of the �string� world, together with the ability to produce some
predictions might make this version interesting however.
I should warn the reader that this thesis starts whith what might

seem as total asides, for example realizing a property of lagrangeans
that will be crucial to us in the following, and a super�cial plunge into
connections between Yang-Mills theory and Einstein gravity , especially
in the conformal Yang-Mills theory of the gauge group spin(n,m). This
is intentional, and is so because these ingredients will be needed in the
following, and we assure the reader that we return to the point once
these things are gone through. Finally I warn that we really should have
written String + �eld theory( but omitted the + so that everybody
could at least recognize the title, as it came closest to what we are
doing.) in the second part of this thesis, this because we will sketchedly
�nd a duality between string theories and certain Q.F.T's in manner
that was predicted by Maldacena four years ago. This shall come from
an independent attempt to quantize gravity �eld theoretically using
coordinate noncommutativity (the attempt is sucessfull to some extent
as it presently seems), and exhibit a candidate for �eld theoretic gravity.
It will also lead to a sketchy proof of the Maldacena conjecture. Much
more important than the proof is the idea of the proof; The attempt
will also give us a good insight into the underlying dynamics of AdS-
CFT correspondences, which seem to be much more general than one
would initially think, indeed those ideas will seem be the origins of
string theory.
Again warning the reader for the speculative nature of this part,

which concretely means that nothing in it should necessarily, without
further investigation, be considered science fact, we now commence our
speculation.
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6. Conventions

We work with God-given units

} = G = c = 1

mostly, and often in theoretical discussions omit factors 2π, i and
various signs when they do not a�ect a purely theoretical discussion.
Speci�cally in this part we have at several places a non-dimensionful
Ricci, and from the beginning of the section entitled �Getting Down to
Business� we use, after an analysis which relates to the natural con-
tants, } =

√
4πG = c = 1 instead, so we, for most purposes, set

G/ =
√

4πG = 1 a natural constant after that section. This should be
contrasted to what one obtains if one does not separate the behaviour
of vielbeins (see below), namely λ =

√
8πG = 1, which is mostly con-

nected to pathological theories.
µ, ν, κ and other indices late in the Greek alphabet are space-time

coordinate indices, i ,j ,k space indices, while a,b,c and other small
Latin letters are ON-frame/ vielbein indices. α, β, γ, etc are supposed
to be gauge Lie algebra indices. We sometimes have �Einstein� or �De-
Witt� sums, i.e integration/summation over index sets with repeated
indices, in various places-it should be clear from the context when such
apply, and thus we sometimes even skip putting out the indices when
it is obvious.
The ON space-time metric in D Lorentzian dimensions is

η = [ηµν ] = dx0 ⊗ dx0 − dxi ⊗ dxi

The reader is assumed to be familiar with such facts of �Twistor�
geometry such as that complexi�ed space-time can be identi�ed with
the grassmannian of 2-planes in T ∼= C4 in the physical dimension.
A manifold is denoted M or X, sometimes with subscripts to denote

homology class and/ or metric, and it should be understood that this
only de�nes an equivalence class of manifolds. Manifolds are assumed
to be complex if not otherwise stated, and we de�ne certain direct limits
associated to these as pseudo-riemannian real analytic manifolds. It
should be understood that the objects we study are principally singular
and smoothness etc. only holds in �general position�. In general, neither
of these concepts are su�cient, and instead one needs concepts such
analytic spaces etc that are outside the scope of this thesis.
A anti de Sitter space is de�ned to be an arbitray space of constant

negative curvature, in contrast with the more common situation where
only the �classical� AdS space of trivial topology is meant. In this
regard, it should be noted that by a mathematical theorem (Yamabe's
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theorem), any proper Riemannian manifold is conformally equivalent
to a space of constant curvature.
A p-brane is de�ned to be a p-dimensional object in space-time, in

contrast with almost any other literature, which usually de�nes it to be
a p dimensional object at a �xed time, this to have Lorentz invariant
formulations which treat time on the same footing as space and to have
better systematics. From this point of view a string is 2-d object in
space-time with it's history already speci�ed, a 2-brane. A subset, in
particular a [homological] chain of dimension ≤ D − 1 is denoted Σ.
Dp-branes, on the other hand, are treated as usual with regard to the
meaning of p.
We use big Latin letters like X,Y ,Z to denote tangent vectors and

sections, and small letters to denote coordinates on a chart. An excep-
tion to this are basis sections of bundles, e.g. cotangent bundles, which
have basis sections ea or θa.
The following is not a convention but should be stated right away to

avoid confusion:
Since we will be dealing with [holomorphic] symplectic manifolds,

although not always explicitely, the above conventions sometimes pro-
duce confusion by expressions like dX for coordinate di�erentials. It
is then undertood that we are taking the tangent as a chart, and in
pulling back to x-coordinates we are going to another coordinate sys-
tem which is also a tangent. These coordinate systems are then related
to the manifold by the exponential map, the di�erence between the for-
mer and the latter is that the latter are background congruences, while
the former are congruences corresponding to an interacting physical
system as classical/quantum �elds over the background congruences.
The image under the exponential map might be called the �integrated�
picture, while the former the tangent picture. We have almost no use
at all for the integrated picture, but rather always assume that we work
with the tangent picture, since we can always patch together a mani-
fold by background congruences over di�erent points as charts. Hence
we never mention that we are in this picture since we always assume
it. Of course this picture is only to give physical intuition, but as it
would have been a likely cause of confusion we have included it here.
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7. The Heart of This Thesis

Roughly we are here to describe the main point of this thesis, over
which the subsequent developments depend.
Consider the classical action

L =
−1

16πG

∫
∗R =

−1

16πG

∫
d4x
√
hR

it is well known that we would like to give it some �quantum� inter-
pretation of it.
Consider an apparently unrelated problem; Why do the lagrangeans

of quantum physics seem to omit so many terms? For Yang-Mills-Dirac
theory we might ask why

LGEN. =
∑

Aαβ(ψ̄(iD/ )αψ)β +
∑

Bα′β′ < A, (D∗D)α
′A >β′

does not appear more often, the coe�cients being c-numbers, as it
is the most general lagrangean compatible with the symmetries of the
theory.
The answers to both questions turns out to be quite complex and

related, and much more interesting than only �they are suppressed by
large terms of high mass dimension�; one cannot put an arbitrary term
in a lagrangean and expect it to describe the evolution of a point parti-
cle if one exponentiates the lagrangean. That is, albeit one may obtain
a di�erential equation by variation that describes solutions which are
superpositions of point particle solutions one does not obtain these
solutions by exponentiating the lagrangean, so Dirac's principle

φ(x, γ) ∼ e−i
R

γ Lφ(x, 0)

for small enough perturbations is not accurate for a set of lagrangeans
if we assume the solutions to be point particles. Never the less one does
obtain something, which however need not be a point particle solution.
Hence there are additional requirements that must be put on a la-

grangean in order for it to describe a point particle. Let us try to
�derive� this answer in elementary way. To �nd it, we must �rst un-
derstand what �lagrangean� is and perhaps di�er between di�erent la-
grangeans. Suppose we a had a smooth analytic function f in some
disc of convergence around the the real X0 of radius R, then we could
expand

f(X) =
∞∑
n=0

an(X −X0)
n, |X −X0| < R ∈ R+
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But then we see, upon identifying terms, setting X −X0 = ∆Xλ, that
this can be written as

f(X) =
∞∑
n=0

an(X −X0)
n =

∞∑
n=0

(
∂λf(X0)

n!
)(∆Xλ)n = e∆X

λ∂λf(λ)|λ=0

We can look at this e∆X
λ∂λ-part independently for a moment. Suppose

it is acting on an approximate momentum eigenfunction in position-
space, i.e. we roughly have a free classical con�guration. Then, with
λ a proper coordinate and xµ coordinates in position space, X0 being
the �time� t we have

(∆X)λ∂λ = ∆t∂t+∆X i∂xi = (

∫
dt)∂t+(

∫
dxi)∂xi = −i[

∫
E−
∫
dxpx]

with energy E, space momenta px. Substituting for the Hamiltonian
we get, parameterizing the trajectory with t

(∆X)λ∂λ = −i
∫

(H − ẋpx)dt

i.e, recognizing one of the usual formulas for the lagrangean L = H −
ẋpx, that gives

(∆X)λ∂λ = −i
∫
Ldt

The property above, that one can generate a 1-�ow [a one-dimensional
�ow], is the most fundamental property of lagrangean in point particle
quantum theory-if we have a theory where we start with L and decide
we are doing a point particle theory we must be very careful and choose
only lagrangeans that correspond to such �ows, i.e such that there is
an equality of the above type. Let us call such lagrangeans admis-
sible or 1-admissible, then understanding that we have an additional
requirement rather than just symmetry in such a theory. At this point
it might be well worth while introducing a lagrangean density L. By
imagining the relevant interactions to be �smeared� out codimension-
ally to the time coordinate, we get, remembering that Hodge duality
gives us the codimensions for a path γ in a space-time X1;

X = −
∫
γ

(

∫
∗γ
L ∗ dt)dt = −i

∫
γ×∗γ=X

Lddx

1Locally this statement makes sense, globally either assume the existence of a
foliation/strati�cation of the tangent bundle or embedd in a topologically trivial
set and Kaluza-Klein continue to obtain such a subdivision. This should not be
interpreted as intrinsic non-foliation having no physical consequences however, or
that the K.K-continuation avoids them, rather these are instead generated as ob-
structions[singularities, homotopy types of spaces, solitons, etc] o� the physical
space-time.

123



The lagrangean density still describes a point particle �ow, but
this time �smeared out�-similarly we call this lagrangean density a 1-
admissible (admissible) lagrangean density. In the following we often
abbreviate largangean density to lagrangean.
What does such an L look like?

L = H − pxẋ

tells us, recognizing terms, that ẋi has to correspond to some current
J i and p to this generator. So for example

L = H − pixi = H − piJi =

∫
H|ψ|2 − piψ̄γiψd3x.

or, in an explicitely Lorentz invariant way for an eigenstate∫
L =

∫ ∫
H|ψ|2 − piψ̄γiψd3xdx =

∫
ψ̄i∂/ ψd4x.

So under assumption that the current is given by the above expressions
we get a Dirac action. The important thing about the action above
is that it is only linear in position space derivatives; this we can see
because L = H − pxẋ is only linear in pi, H, and the rest falls by
covariance.
Despite this we might wish to consider other types of functions under

the integral sign, which do not generate �ows, at least not in the clas-
sical 1-�ow sense. So these these new lagrangeans do not give solutions
to di�erential equations, at least not along the �time� coordinate when
they are exponentiated and they do not obey Dirac's principle in the
usual sense. Never the less, we could always vary the lagrangean, and
so δS = 0 would give a di�erential equation that we might solve appro-
priately as functions of the �time� coordinate , so we will call these new
lagrangeans variationally correct, since they could satisfy the symme-
tries of the theory and give sensible equations of motion. How do the
variationally correct lagrangeans relate to the admissible ones? Well,
lets pick an example that might help us;

LNEW = φ∂2
t φ− φ(∇)2φ

gives the equation of motion �φ = 0. We see directly that the
solutions φ are superpositons φk = Ake

ikx+Bke
−ikx, Ak, Bk c-numbers,

where it is understood that the time coordinate in the last term may be
re�ected. Thus we understand, recognizing e−ikx to be just the spectral
representation of eX that φ will be of the form

φ = Ae
−i

R t
t0

(
R
LLINEARd

3x)dt
+Bei

R t
t0(

R
LLINEARd

3x)dt
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where LLINEAR is directly proportional to a derivative. And there is
simply no way, at least not in a clearly visible sense, that this new
lagrangean would have produced it's own solutions by exponentiation.
It is important to recognize that when we do so, for example in the
operator picture, this is a remnant from elementary quantum mechan-
ics, where the di�erential equation is parabolic-simply because it is
relativistically invalid. So they are solutions of something that looks
like

(−∆ + · · · )φ = i∂tφ

which is very far from any discussion in this thesis.
Hence one must be careful in applying Dirac's principle, which is

wrong when incorrectly applied. Let's put these ideas in a de�nition
and a new principle;

De�nition 7.1. We call a lagrangean p-admissible if it is a pure p-
derivative term lagrangean.

A p-admissible lagrangean solution is quite often for the cases we
are considering, not always, generated by �ows of fundamental or 1-
admissible lagrangeans, i.e

φ = Ae−i
R
L1 +Be−i

R
L2 + · · ·+De−i

R
Ln

with Li 1-admissible. For example the �Pauli� lagrangean ψ̄F/ ψ, F/ =
Fµν

2
[γµ,γν ]

2
corresponds to a part of ψ̄D/ 2ψ if we vary ψ, which gives the

di�erential equation

D/ 2ψ = (�+ F/ )ψ = 0

which has solutions given by

ψ(x, γ) =
e−i

R
γ ψ̄A/ ψP+ + e+i

R
γψ̄A/ ψP−

2
ψ(x, 0)

for a path γ joining x0 and x, where we could call the second term
the anticausal evolution. Now, it must be understood, that despite
that we in classical physics assume that for some initial value data
the anticausal evolutions are inseparable from the causal, and that we
must act by an evolution operator on a state that is a mix of causal
and anticausal, this is not so a priori in quantum theory, although it
may become so later in the S-matrix. There, instead, one separates
the causal from the anticausal evolutions and instead call the solutions
particle and antiparticle. So a solution is then truly given by

Ae−i
R

γ ψ̄A/ ψψ(x0) +Be+i
R

γ
¯̃
ψA/ ψ̃ψ̃(x0)

125



and again Dirac's principle did not apply. In the above ˜ denotes
charge conjugate, e.g in the sense of the operation PT for free �elds.
This is the reason for us not having �Pauli� terms in our lagrangeans-
because a lagrangean not only need satisfy the symmetries of a speci�c
theory, but also must �be� a lagrangean in the sense that it generates a
�ow, e.g. truly belongs in a Feynman path integral, since a PI depends
on Dirac's principle being correct. This is also the reason why they
give pathological theories when exponentiated in the operator picture,
for exponentiating them is simply wrong.
Let us sum so far, before going on to this new situation:
(1) Not every lagrangean that satis�es symmetries is associated to

worldlines.
(2) Not every lagrangean belongs in an exponential of quantum

theory when integrated.
(3) This is so already in �eld theory.
We would like to generalize the above to the case where we are not

considering 1-�ows. Using the higher-dimensional equivalent of �di�er-
entiation�, e.g the operator

∂

∂Σµ
=

∂|µ|

∂µ1x1 · · · ∂µnxn

for the multi-index µ = (µ1, · · · , µn) in some local orthogonal coordi-
nate system, in e�ect a representation of a Radon-Nikodym derivative
when having unit or nill entries in the µi, it is not hard to show, fol-
lowing the previous more or less exactly, that

L = Hσ +
∑

|µ|=|σ|,0≤σi≤1

pµẋµ

In the above dot denotes di�erentiation w.r.t. to the multi-index σ,
and for example

ẋµ =
dxµ1 ∧ dxµ2 · · · dxµn

dxσ1 ∧ dxσ2 · · · dxσn

for a parameterization by the coordinates {xσ1 , xσ2 , · · ·xσn} is the
corresponding Jacobian for a coordinate change. This gives terms of
order |σ| in the lagrangean, so this tells us to associate p-dimensional
in space-time to such a lagrangean-but one must be careful; it is also
possible to write down terms that do not make sense as �ows, for ex-
ample by squaring a Dirac lagrangean-then one obtains �Fermi�-similar
terms, and indeed experience tells us they are pathological.
As an example of the the converse we might look at the classical

lagrangean
L = (hµν) +Bµν)dX

µ ∧ dXν
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a version of a Polyakov lagrangean, non-nill under small transversal
complexi�cations and hermitean metrics, which after a change of coor-
dinates to xa and neglection of a surface term is

L = hµν∂aX
µ∂bX

νδabεΣ = −hµνXµ∂b∂
aXνεΣ

εΣ the world sheet volume element, δab a �at world sheet metric. So
indeed it has this second derivative term, namely the d'Alembertian.
Let us, as an aside, state the general Dirac's principle that truly ap-

plies, in an admittedley imprecise way since the cases must be attacked
case by case.

Principle 7.1. The approximate solution to the equation δL = 0 is
given by

φ ∼ e−iL1e−iL2e−iL3 · · · e−iLk + e−iLk+1e−iLk+2e−iLk+3 · · · e−iLl + · · ·

where integrations are supressed.

It is understood that the above merely states that deformations of
functions may be generated by Lie algebras of smooth, analytic or
ditto germs of some suitable bundle and that this is e�ectuated by
near on-shell conditions relating certain operators approximately in
the dynamical direction(s) to operators on the spatial directions and
as such is a very general statement. It is also understood that with
general enough generators L we can generate any function possible, for
example the string theory lagrangean

1

2πα′
Gµνγ

ab∂aX
µ∂bX

ν

is locally connected to the di�eomorphism [ Virasoro] algebra on the
unit circle and the on-shell condition ∂∂̄Xµ(z, z̄) = 0, generated by Lm
satisfying

[Lm, Ln] = (m− n)Lm+n +
c

12
(m3 −m)

This algebra is in a holomorphic representation for vanishing central
charge represented by Lm = e−mw∂w in a small transversal complexi�-
cation of S1. If we want to get o�-shell deformations of closed string
space S1 we have to go transversal to the di�eomorphism algebra and
�nd other generators, which would imply breaking away from the bi-
holomorphism group in this example, which has a �avor of the general
thing. So, in the general case, Dirac's principle amounts to partitioning
the deformations of a [function, �eld, algebra] space V =

⊕⊗
Vi⊕· · · ,

TV , as
TV ∼=

⊕⊗
TVi ⊕ ker(φ)
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, φ a homomorphism, and these factors correspond to all kind's of
degrees of freedom. e.g. gauge, spin and brane degrees of freedom
according to suitable conditions like for example on-shell conditions and
their codimensions in �eld con�guration space lifted to local tangents.
The above lagrangeans in general now contain terms corresponding to
p-�ows, and correspondingly the partitions Vi are locally de�ned in the
�eld con�guration space.
Let us return to the Y.M-term of the action we were looking at,

LYM = Tr[F∗F ] =< A,�A >

which is 2-admissible in the above heuristic way. Yet it is well known
that this lagrangean gives sensible answers in a quantum theory, where
it is certainly exponentiated. Just as as the cocycle we most easily
associate with the Dirac action is the current 3-form J , which satis�es
DJ = 0 we have for this case the �eld strength F , which satis�es
DF = 0, a 2-form with codimension 2. Despite that one could view
the above lagrangean in a 1 + 3 way, the most interesting way is to
look at it in a 2 + 2 way, which associates it to 2-dimensional objects,
i.e. �ux tubes as in Misner, Thorne, Wheeler, so it could be viewed as
generating a 2-�ow.
We note then that the Yang-Mills-Dirac action can be interpreted

as realizing dualities in the DeRham cohomology ring, or , to be more
precise, in a cohomology rings taking coe�cients in various spaces, i.e
in a ring of DeRham currents and uses them to generate deformations
of p-forms and associated p-dimensional objects. More clearly for the
compact smooth case, writing ω for the connection this time

−iS =

∫
L = −i[ωµαxJµαx + FµναxF

µναx]

= −i[< Σ1, J1 > + < Σ2, J2 >] = −i[ω∗J + F ∗F ] = −iΩ∗
xJ x

with Ω = Σ1 + Σ2 a sum of a 1/3-chain and a 2/2-chain (Poincare
duality applies), J = J1 + J2, i.e a p-dimensional object is deformed
in d − p codimensions, and it is in the Poincare dual space that the
generators are, where it is understood that we only retain volume ele-
ments before the integration. Hence the Yang-Mills-Dirac action is also
a smooth topological and geometrical object, namely the generator of
a deformation of smooth geometry/topology, running diagonal over the
cohomology ring in dimension 4. Actually, this is no bigger surprize,
for already the work of Donaldson and others showed that for the case
with vanishing fundamental group π1(X) ∼= {0}, which corresponds
to retaining the Yang-Mills term only, that 2-forms, indeed even �eld
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theoretic considerations� roughly corresponding to calculating instan-
tonic solutions in dimension 4� gave totally new means for di�erential
topological classi�cation theory.
Similar heuristics that we made for the Pauli term, which we do later

in this thesis, explains also why the Hilbert-Einstein action, which is 2-
admissible by explicit dimension counting, is pathological as an action
in a quantum theory exponential. That is, albeit the �eld equation
obtained by it is sensible and certainly does describe classical gravity(
modulo reformulations), one cannot exponentiate it naively, or coupled
versions with naive kinematical terms, to obtain solutions to this same
non-linear equation- if one wishes to associate these to 1-�ows. To see
this within the Hilbert-Einstein context is not di�cult for the case of
small gravitational �elds; we have with bars denoting the trace-anti
trace operation

Tµν = Tµν −
1

2
gµνTµν , Tµνe

µ ⊗ eν ∈ Γ(X, T2(X)⊗ L)

Γ(X, T2(X) ⊗ L) the sections of a smooth bundle of contravariant
2-tensors of space time with possible twisting line bundles L for small
deformations hµν

R = gµνRicµν = gµνRicµν =

= −1

2
hµν�hµν +O(h3

µν) + constants, gµν = ηµν + hµν

which will not generate it's own solutions as a lagrangean. This is
remarkable, as the above linear approximation is remarkably accurate
for a wide range in the low-energy/ long distance physical applications
of gravity, indeed most of the applications of gravity might use even
rougher approximations, which still show this defect. Thus, using the
same reasoning used before for the scalar lagrangean, the conclusion
that Hilbert-Einstein action does not generate it's own solutions to the
equation determined by variation, at least not in the low-energy limit
as 1-�ows, is now unavoidable.
That is, if we instead just change perspective we might discover that

already �eld theory is intimately connected with topology, geometry
and above all p-dimensional objects. The reader who is subscribing
to Yang-Mills is thus already subscribing to two dimensional objects
roaming about in space-time, although perhaps unaware of it, from this
perspective, which may or may not be correct.
And, following the above, we have the heart of this thesis; if already

�eld theory can be used to describe 2-dimensional objects, indeed p-
dimensional objects straight away, maybe there is a simpler way to
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describe the gravitational �eld, that perhaps would give order in the
chaos of the p-brane zoo. So maybe we could turn the string para-
digm around and discribe strings by point particles. But are these
2-dimensional objects truly the 2-dimensional objects of string theory?
Let's �nd out!

7.1. Summary.

• According to the above, lagrangeans are not arbitrary, but must
generate �ows. This constraints which lagrangeans that are
admissible as quantum actions.
• These �ows are then supposed to be associated to N-dimensional
objects, and consequently their lagrangeans, which are associ-
ated to these N-dimensional objects, are called N-admissible.
• H.E-Gravity looks like a lagrangean that is not generating such
a 1-�ow, so it might be that the equation of motion is right
although the lagrangean is not for purposes of exponentiation.
Furthermore if, despite this, it is right to exponentiate it it
should be associated to 2-dimensional objects.
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7.2. Yang-Mills Theory. Let P (X,G) be a smooth principal bundle
over space-time X with �ber being the groupG corresponding to the Lie
algebra g, and a let A = AαaTαea be a connection on the cotangent prin-
cipal T ∗P (X,G), Tα generators belonging to some �nite dimensional
Lie algebra g satisfying [Tα, Tβ] = fγαβTγ. Call this connection A gauge
potential and G a global gauge group, it being understood that one can
have a right action by non-constant sections of P on P , which are then
termed 'local� since they shift value over di�erent space-time points,
so that these automorphisms of P are called gauge group. De�ne for
any charge g, g/ = g

2π
and let it be understood that we for unitary

cases use 1
2πi
gTα = −ig/ Tα to generate transformations of some vector

space which then become isometries leaving the amplitudes of quan-
tum mechanics invariant. Let E → X be a vector bundle associated to
this principal bundle, and form a Z2 graded extension by introducing
grassmannian coordinates θi satisfying [θi, θj]+ = 0, and letting these
bundles take graded coe�cients. Then a Dirac �eld ψ = ψiθ

i may be
associated to sections of the form ψiθ

i, i, j now space-time superinde-
ces, it being under stood that G will have to include the spin group of
the appropriate space-time in the form

G = G1 ⊗ Spin(n,m)

and thus E → X be a bundle module for such an action, G1 another
group. Let us relate this picture with the picture with the antisym-
metrization that one usually does for classical Dirac �elds to obtain the
correct statistics for fermionic �elds. We have for ψ1, ψ2 expanded in
space-time grassmannians,

ψ1ψ2 = ψ1
iψ

2
j θ
iθj = ψ1

iψ
2
j (θ

i ⊗ θj − θj ⊗ θi)

or, mapping by θi ⊗ θj corresponding to the 'time�, [event ordered]
space-times using the obvious duality

< θi ⊗ θj, ψ1ψ2 >=< θi ⊗ θj, ψ1
iψ

2
j (θ

i ⊗ θj − θj ⊗ θi) >= ψ1
iψ

2
j − ψ1

jψ
2
i

which corresponds to the usual picture when not using grassmanni-
ans.

7.3. Physical interpretation of the Yang-Mills Equation.

7.3.1. A Local Study. Variation of the Yang-Mills lagrangean

LYM = ψ̄iD/ ψ + Tr[F∗F ] =< A,�A >
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gives the equations
D∗DA = J
D/ ψ(x) = 0

which are supplemented by two conserved quantities according to
DJ = 0, DF = 0, F = DA. We may begin with a local study for line
bundles. We have then, looking at the YM part only,

dF = 0
d ∗ F = J

We may call F the Faraday form and M = ∗F the Maxwell form.
The above equations have the important property that they are invari-
ant under both the conformal group and the relevant gauge group. For
Σ a 3-chain 'space�, the �rst implies

∫
∂Σ
F = 0, which is equivalent to∫

Ω1
F =

∫
Ω2
F for homologous 2-chains Ω1, Ω2, implying conservation

of the action

I =

∫ S1′

S1

F =

∫ S1′

S1

trF = {trK}[Ωi] = {c1}[Ωi]

for S1′ ,S1 bounding Ωi.

Ω

Ω

S

F

F

1

1

Σ

Σ

1

2

F J

F*

Probability flux

Figure 8. Flux sheets in Yang-Mills and associated spa-
tial chains. The functoriality preserves the a value of the
integral associated Ω1 when it is deformed to Ω2. Notice
how the probability current evolves in a circular manner
on the sheet.
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The probability �ux through a hypersurface Σ1, dim(Σ1) = d− 1, is

Φ(Σ1) =

∫
∂Σ

∗F

and this is seen to be conserved, i.e

Φ(Σ1) = Φ(Σ2)

for homologous Σi. A �Hodge-Weyl� or �Chiral� transformation F 7→
F(α),α = Re(α) + ∗Im(α), ∗2 = −1, is a combined rescaling and
Hodge rotation, and has the property that it interchanges gradually
the Faraday tensor for the Maxwell tensor. This means that current-
less directions obtain current and conversely. Alternatively we can see
this as a rigid rotation of the surface Σ in a direction codimensional to
the current, making the current through the surface vanish at angles
π/2, · · · . The set of such global Hodge-Weyl rotations can be seen to
form a Riemann surface due to complex structure of the target space
identi�ed with constant H-W rotations.
It is not uncommon that various objects can be related to the Yang-

Mills because of various identities and cohomological matters. For ex-
ample, if the �ux sheet( tube) is on shell w.r.t. to an Einstein criterion,
the Ricci form on complex space-times F equals the Kahler form on
the sheet, i.e F = λhµνe

µ ∧ eν h a world sheet metric, λ a c-number,
and if the entire space-time is on-shell ditto holds for TrR, R being
the curvature form, which is associated to the case with a complexi�ed
spin(n,m) Yang-Mills bundle.

7.4. A Global Study. Globally, properties of the target space, i.e
space-time, have to be taken into account when looking at �ux sheets in
space-time. The �ux tube Ω below would close, but it might encircle a
obstruction of smooth topology of dimension p, for example a coulomb
singularity. Thus

∫
ω
F = c1[Ω] might be non-nill. If this is not even,

this gives an obstruction to spin structure since H2(X,Z2) then has
(non-trivial) generators. This can be taken into account to deform
world tubes arbitrarily, by splitting the integral in a part that gives
a contribution and one that does not. The same thing holds for the
current J , the �ux out of any closed 3-surface might not be nill, since
F might for example not be smooth, something that is contained in
violation of one of the above equations

{d ∗ F}[Σ] 6= {∗F}[∂Σ]
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7.4.1. Interpreting the Chern Character and Class Physically. We have
ch(F) = TreF in one convention. According to previous discussion,
this is for the on-shell �ux tubes (classical �string' sheet) the same thing
as the Kahler form on the sheet modulo a constant. It might seem as
we are confusing an antisymmetric �eld with a symmetric one, but note
that we might very well abandon the convention of having symmetric
metrics mathematically, with symplectic metrics as a perfect example,
if we only remember the physical consequences. Interpreting the metric
hµν as a classical background acting on �rst quantized �elds we have
then, taking ends as the � 'cap� product

1 + λhµνe
µeν +

1

2
(λhµνe

µeν)2 + · · · =

1+ + λ λ
2

2

2

+ . . .
Figure 9. The pertubative series generated by h.

where Π∗
1B, B for background, should be evaluated according to the

actual classical evolution, and could be interpreted as a classical cor-
rection to the evolution of a free particle.
We shall not pursue this further, due to inadequacies soon to be

corrected, but note that we are essentially dealing with the S-matrix of
a topological quantum �eld theory if we project to

∧
T ∗Σ, Σ a compact

closed even dimensional chain, and that the above also 'gives�, taking an
inductive step, that we can split manifolds locally as lower dimensional
objects, or, physically put, that we can decompose spectra to describe
�elds of composite physical systems in a �rst quantized formalism. For
example, the above says for 2-chains Σi generating dualities,

1 + λ < Σ1,Σ
1 > +

λ2

2
< Σ1 × Σ2,Σ

1 ∧ Σ2 > + · · ·

which can be put in the more familiar form
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1 + λ < Σ1,Σ
1 > +

λ2

2
< Σ1 × Σ2,Σ

1 ∧ Σ2 > + · · · = Te
R
λh

T a time/event ordering putting Σi � Σj , i > j, where we de�ne an
arbitrary operator O1 to be latter to another O2 if it appears to the
left of O2, i.e

O1 · · · O2

gives O1 � O2. For non-closed chains the ends can be glued, and
so not necessarily give something with no dynamics, although they do
give a topological theory in the sense that the amplitudes are invariant
under smooth deformations of the intermediate chain, since the ends
can be variable. For example most of classical mechanics is governed
by this, where we have conservative forces and potentials, i.e cocycles,
governing the dynamics, so such a theory is not uninteresting for physi-
cal purposes since it gives a �rst approximate description of �elds valid
within classical limits. This correspondence that arises between parti-
tion functions/ S-matrices and topological functors when restricted to
compact d-folds is called the topological functor correspondence, and
can be used to guess the look of a partition function in some elemen-
tary cases, but more importantly it tells us that general �eld theory is
intimately related to topology since we require similar invariances that
link the two concepts.
Consider the spinorial Klein-Gordon lagrangean which belongs to

such a Yang-Mills theory

L = ψ̄(iD/ )2ψ = ψ̄(�+ F/ )ψ

which is a �quantum� version of the classical lagrangean given by
L = λhµνe

µν , now �smeared out� codimensionally. This is realized by
neglecting the kinetic term, hence obtaining

Lint = LF = ψ̄F/ ψ
In the classical limit, just like∫

ψ̄A/ ψ 7→
∫
A =

∫
φdt±

∫
Ā · dl̄

for quantum electrodynamics going over to classical electromagnetism
(notice the di�erent integration domains) this is∫

ψ̄F/ ψ 7→
∫
F =

∫
(Gµν + Fµν)e

µ ∧ eν
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So a �Pauli� term, a term well known to be pathological in �eld
theory, carries heuristically over to our antisymmetric Polyakov term.
We have then a hint for interpreting the Chern character. Taking

a graded version to link to the topological functor discussion we just
had ( We will be worrying about the �straight� Pauli version quite a lot
later and so make up for this.), we have writing a unrenormalized path
integral, with Ω the curvature of the total gauge group corresponding
to the direct sum bundle T ∗X ⊕ P (X,G) corresponding to factoring
out the spin gauge group, G groups corresponding to K.K degrees of
freedom, that for a �xed background connection ω in the standard
model gauge group,

Z[F ] = TR[e−W [F ]] =

∫
DψDψ̄e−ψ̄(iD/ )2ψ

Factoring out theG gauge degrees of freedom, which are 'dead� since we
only consider a classical con�guration in those �elds, and introducing
a deformation parameter β

Z[F ] = TR[Γ5e−D/
2β]

∼ TR[Γ5e−D/
2
ωβe−βF/ ]

∼ TR[Γ5e−D/
2
ωβ]e−βF/

= SDET [�+R/ ]e−βF/

Where we neglected quadratic and worse Baker-Hausdor�-Campell terms
in β. We can evaluate the remaining term involving the curvature of
the tangent bundle; Following previous remarks and factorizing the
partition function accordingly locally we can calculate it choosing the
free �eld theory as a renormalization point for the PI. Expanding in
the spectrum of the operator � = D∗D = −DµDµ, the trick is to
consider calculus on S1 × S1 × · · · × Sd = T d for d-folds. Let us
use coordinates xi ∈ [0, Li] on T d = E/Γ, Γ an appropriate lat-
tice. Then φn1,··· ,nd

= sin(n1πx1

L1
) · · · sin(ndπxd

Ld
) are eigenstates, with

�′n = ξ′n = π2n2

L2
i

eigenvalues 2 in the spectrum of the free Laplacian
reduced to the i:th degree of freedom. Hence, with minus for our case
and plus for the usual fermionic case,

ZN [F ]±1 =
∏ ′

(1 +
R/

�′
) =

∏
Sp(�)

′
(1 +

R/

ξ′n
) =

∏
1≤i≤d

∏
ni

′
(1 +

λiL
2
i

π2n2
i

)

2Prime ' denotes eigenvalue here, but denotes a little bit later Eisenstein product.
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Putting zi = −i
√
λiLi

π
, this is, using the usual Euler product formula∏

Z+
(1− z2/n2) = sin(πz)

πz
,

ZN [F ]±1 =
∏

1≤i≤d

∏
ni

′
(1− z2

i /n
2
i ) =

∏
1≤i≤d

sin(πzi)

πzi
=
∏

1≤i≤d

sinh(Li
√
λi)

Li
√
λi

Using a holomorphic factorization of the complexi�ed tangent bundle
TX, TX = T+X⊕T−X, we have

√
λi = λ±i corresponding eigenvalues

corresponding to the holomorphic factors, which are like 1-dimensional
spinors. Hence setting xi := 2λ±i Li the corresponding dimensionless
factors of the holomorphic curvature,

ZN =
∏

1≤i≤d

xi

2

sinh(xi

2
)

which we recognize as the Â-genus on TX+. The partition function
is thus

ZN = Â(T+X)Ch(P (X,G))

which we know to give the index of the Dirac operator on compact
orientable smooth even dimensional manifolds. We could prove that
this truly gives the analytical index of the Dirac operator, but instead
we move on as this is done in many places elsewhere.
Thus, as far as the Chern character concerns, we can view it as

a classical contribution to the partition function with a topological
interpretation. Similarly, other aspects of the Yang-Mills �eld have
other topological uses, which we partly review in later chapters when
discussing Donaldson theory. Before moving on we remark a last thing
on connections between partition functions, physics, and topology. We
know that

c = det(1 +K)

K = iF
2π
. This understood, it is not hard to interpret the determinant

as the amplitude for something at all to happen when generated by the
interaction iF

2π
= δO

OB
, δO a perturbation over a background operator

OB. Since we work with closed surfaces when looking at the compact
scenario we have that the above is a sum of vacuum amplitudes, i.e
p-dimensional vacuum bubbles3 in the target space d-fold. The same
thing goes for the Chern character, indeed for any cocycle we equate
to a cycle we get a classical vacuum bubble (this is the cycle criterion)
amplitude having the correct invariance properties( this is equivalent
to the cocycle criterion) under small transversal deformations. For

3Corresponding to classical p-branes. Notice the convention of p being the di-
mension of a p-brane bounding two spatial branes of dimension p− 1.
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all of the functors and partition functions discussed above the �eld
strength, which is a two-form and hence associated to 2-surfaces, is
fundamental. Hence it would not be unnatural to associate the usual
non-super partition function to two-dimensional objects too, although
we traditionally do not do so.
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7.5. Summary.

• According to the above, 2-dimensional terms and 2-admissible
lagrangeans are heuristically related to Pauli terms and the
spinorial Klein-Gordon equation for Yang-Mills.
• Yang-Mills theory and smooth topology are intimately related,
and certain topological functors can be interpreted as vacuum
amplitudes in �eld theories connected to a Pauli version of
Dirac-Yang-Mills.
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7.6. Einstein Theory. In this section we review brie�y Einstein the-
ory, and mention 'the� two canonical ways of deriving the equations
of motion the theory brie�y. After that we focus on a third way, that
makes it possible to link Einstein theory to previous discussion about
2-admissibility, Pauli terms and Yang-Mills.

From Hilbert's point of view, Einstein theory is the theory governed
by

(1) The action

S =
−1

16πG

∫
X

∗R +

∫
X

Lint

with
(2) extremality of

S =

∫
γ

|| d
dλ
||2 =

∫
γ

XµXν =

∫
γ

∂λx
µ∂λxν

relating the metric to the connection as an on-shell condition.

It may not be clear right now how the connection is related to the
last equation, however, so let us discuss it �rst. Explicit variation of
the latter gives ∇XX = 0 in the form

−ẍµ = Γµσρẋ
σẋρ

with Γ the connection components in the coordinate frame belonging
to a Levi-Cevita connection. Despite that emphasis is usually put on
the former action and less on the latter, the latter is equally important
in determining the physics of gravity. Just like Yang-Mills theory is
determined by two �elds and two equations, with one of these equa-
tions which could be envisaged as lowering the number of �elds by
introducing relations among them, e.g.

D/ ψ = 0

which is obviously a statement of covariance, we have in Einstein
theory

DX = 0

, the latter also a statement of covariance. Indeed, put in a way
that most clearly displays this similarity, namely Cartan's �rst struc-
ture equation with D/ the induced image of the usual vector space
isomorphism

∧
T ∗X → Cl(X) we have
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D/ θ = 0

θ the ON vielbein. Before going back to the �rst action, it's time
to mention one thing. Mathematically, we chose an 'energy� func-
tional above, related to the Klein-Gordon functional, not to confound
the reader with the just slightly more technical 'length� functional,
which would have corresponded to a Dirac functional. The extremals
of the Dirac functional are among the extremals of the Klein-Gordon,
although the converse does not hold, so we came out �ne anyway. No-
tice that it would have been the length functional that we would have
chosen if we would have done 1-admissible quantum theory and wanted
'quantum' lagrangeans that we can exponentiate. The two above la-
grangeans are classical lagrangeans however, so they do not need gen-
erate anything, and hence escape the argument.
Let's go back to the �rst action. Following to the variational iden-

tities listed in the appendix variation of the lagrangean gives, with h
the usual space-time metric,

0 = δ(
−1

16πG
R
√
h+Lint) = (

Ric
µν

16πG

√
h+

δLint
δhµν

)δhµν = (
Ric

µν

16πG
+

1√
h

δLint
δhµν

)
√
hδhµν

Setting T µν := 2√
h

δLint

δhµν
this is

Ricµν = 8πGTµν

with G := Ric called the Einstein tensor. This is the usual Einstein
�eld equation. Hence our two equations are, with unit gravitational
constant,

G = 8πT
∇θ = 0

the latter the usual �rst structure equation for vanishing torsion,
where we used ∇ for a torsion-less compatible connection. This from
Hilbert's point of view, an essentially lagrangean point of view.
From Einstein's point of view, we know that the stress-energy will

be covariantly conserved, i.e ∇∗T = 0, and that we want to equate it to
some other 2-tensor of a geometrical nature. It can be shown that also
G satis�es covariant conservation by contraction of the second Bianchi
identity

S(∇XR)(Y, Z) = 0

S denoting symmetrizer in X,Y ,Z. Hence Einstein equates this to T
modulo a constant λ and then �xes the constant via a calculation of
the physical outcome, e.g Newtonian limit, which gives him λ = 8πG.
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The compatibility condition from the connection then comes from the
equivalence principle, hence

G = 8πT
∇θ = 0

We remark that Einsteins reasoning is essentially equivalent to a
statement of cohomology of the operator ∇∗ and the dimension of it's
kernel. In a similar spirit it can be shown that, at least locally, G is the
only covariantly conserved symmetric tensor that can be constructed
out of the metric of second order in derivatives.
Let us derive the above equations in various reformulations to un-

derstand them better. The �rst way we would like to reformulate the
Einstein �eld equation is in the moment of 4-rotation way. Consider
Dθ = Θ = T , Θ = T the torsion form. Θ has an interpretation as the
twisting of a vector along parallel displacements( hence the name) so
we interpret it as something reminiscent of angular momentum L in a
d-dimensional version, Dθ = L. To obtain the 'torque� M , we take the
covariant derivative, then getting

M = DL = D(Dθ) = (D2)θ = R ∧ θ
R = Rα

abTαe
a ∧ eb, Tα the appropriate Lie algebra generators of the

structure group of the frame bundle on our d-fold. We know that the
stress-energy is a vector valued one-form, since

Pa =

∫
σ

Tab ∗ eb =

∫
T · dΣ

gives the momentum �ux through the hypersurface Σ, this more
or less by the de�nition of T . To get a 1-form out of a 3-form in 4
dimensions we take the Hodge dual, thus ∗R ∧ θ is an appropriate
vector valued one-form and we only need check that this is covariantly
conserved to be able to equate them. Stating conservation in terms of
∇ instead of it's Hodge dual, we have ∇ ∗ T = 0. Similarly

∇R ∧ θ = (∇R) ∧ θ +R ∧∇θ = 0

in view of the Bianchi identity ∇R = 0 and the �rst structure equation
∇θ = 0 (We are assuming ∇ to be torsionless).
Hence we identify

R ∧ θ = ∗T
(Again we do not bother with signs and constants). ReplacingRabe

aeb 7→
Rabe

aeb∗, i.e taking a �trace� (contraction) among two indices, this is
R/ θ = (∗T )contracted indices, where R/ = Rab

2
γaγb, γa = ea + ea∗. But

now we recognize instantly that since ∇/ θ = (∇+∇∗)θ = 0 we have
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0 = ∇/ 2θ = ∇a∇b[
{γa, γb}

2
+

[γa, γb]

2
] = (∇∗∇+R/ )θ

so we have our candidate for a very �natural� stress-energy T, setting
T = ∇∗∇θ, where we as usual are scratching constants all over the
place. The important thing is that

(∇∗∇+R/ )θ = 0

, hence∇∗∇θ = R/ θ, is as close as can be to the spinorial Klein-Gordon
equation. We can now see that we can �nd some interpretation of R/
too, since ∇∗∇ = ∇µ∇µ in �at space-time. Hence R/ = m2 up to a c-
number constant. By the same token we now get a interpretation of the
stress-energy, ∇2θ = R ∧ θ = ∗T gives ∗T to be the �moment� of rota-
tion in the group SO(1, 3), as something reminiscent of a combination
of force and torque, interchangeably mixed by the choice of coordi-
nate system. So we could formulate the above as a �Newton-Einstein�
equation

∇2θ︸︷︷︸
∼mẍ

= ∗T︸︷︷︸
∼F

with ∼ denoting analogy.
We notice another couple of reformulations, if, following Misner,

Thorne, Wheeler, we let F denote Hodge duality on the exterior tan-
gent of our pseudo-riemannian acting only on the vector index, we have

FR ∧ θ = eσ ⊗ (∗R∗)σνκν dΣκ

where (∗R∗)σνκν = Gσκ is well known. So the MTW construction
is the same thing, except that they fancy the exterior tangent, and
they also like to interpret the R acting on the θ as the moment of the
gravitational �eld.
Let us derive the above, heuristically, from a naive �rst quantized

'quantum' point of view instead. We start with the Klein-Gordon equa-
tion (∂µ∂µ + m2)u = 0, u a real scalar. Tensoring u with SO(1, 3)
module in the de�ning representation to get a SO(1, 3) theory we get
for such basis covectors eσ that

(∂µ∂µ +m2)u⊗ eσ = 0

Taking a vector valued array of these equations and writing [ueµ] := θ
we thus have

(�+m2)θ = 0

Interpreting the θ as a spinor of a SO(1, 3) theory we want to identify
the square mass with some geometrical quantity. Letting F be the
gauge �eld strength of a massless theory we get from ∇/ θ = 0 the
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relation (� + F/ )θ = 0, hence m2 = F/ by identi�cation. So (� +
F/ )θ = 0, i.e −�θ = F/ θ. Taking the part proportional to

∧3 T ∗X
this is

−�θ = Fθ
Usually, we want to split up the curvature as a perturbation over

the curvature in one-particle space( mass), where we look upon the
former as a variable curvature/mass induced by interaction with other
particles, i.e R = m2 + RB + Rint, RB

4 the multiparticle space-time
background curvature, Rint being interaction curvature, which would
then include pure gauge �eld strength terms in other gauge groups
than SO(1, 3) ( spin(1,3) when we totally �rst quantize) like various
terms associated to usual Yang-Mills theories. The above split could
for natural reasons be called a Zakhorov partition of the curvature, as
A. Zakhorov at an early stage of physics suggested that renormaliza-
tion schemes may produce space-time curvature, and a mass change
e�ectuated by renormalization by the above precisely produces cur-
vature, thus having some similarity to Zakhorovs idea. Later we will
learn a relation to AdS spaces( spaces of constant negative curvature)
for mass states at in�nity, and then there will be a minus sign in front
of the mass to account for a necessary double Wick rotation. In our
conventions, this corresponds to going to the MTW conventions for
the signature, so if one is already in those conventions one need not do
the continuation. This has the interpretation that the way we handle
the signature is not arbitrary, and the �Why?� of this will, hopefully,
become clear later.
Hence we can sum up the content of the Einstein �eld equation as

P 2θ = M2θ

P = i∇ a covariant momentum operator, −M2 the Riemannian curva-
ture.
A good rounding way of rounding o� this section would be to rigor-

ously prove the stated link between the above Klein-Gordon equation
and the Einstein �eld equation. This is done in the same appendix as
the variational identities used to derive the equations in the Hilbert-
Palatini formalism are stated, since it breaks a little bit away from the
style otherwise used in the physical part of this part of this thesis. It is
anyway deeply recommended that the reader makes himself aquainted
with that section straight away to be able to follow the line of reasoning
used in the following.

4Still omitting numerical constants.
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7.7. Summary.

• We investigated the Einstein �eld equation, and came to the
heuristic conclusion that it is related to a Klein-Gordon equa-
tion on space-time vielbeins. We promised that this is proved
in section 8.1.
• The Hilbert-Einstein action was identi�ed with a �Pauli� term
in this KG equation.
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8. Quantum Theory

According to the appendix touching aspects of classical gravity we
have that classical gravity is supposedly described by an action only
corresponding to a variationally correct, but inadmissible, action

S =

∫
dDxLCLASS. =

∫
dDx < θ,D/ 2θ > +|Ω|2

θ being the appropriate ON-frame, Ω the curvature of the connection
D. In the above and the following the fundamental �elds are always
the connection and the vielbein θ. A split-up of the �rst term reveals
the Hilbert-Einstein term as follows;

< θ,D/ 2θ >=< θ,�+Ω/ θ >=< θ,�θ > + < θ,Ω/ θ >=< θ,�θ > +R

By the same remarks we could, imagining in an ad hoc manner θ to be
a matter �eld, so that we can apply the reasoning of the section �The
Heart of This Thesis�, �cure� this action and make it's matter part 1-
admissible by the substitution D/ 2 7→ D/ , i.e obtaining a gravitational
version of a Yang-Mills lagrangean

LCLASS. =
∫
< θ,D/ θ > +|Ω|2 =

∫
< θ,D/ θ > −1

4
Ωα
µνΩ

µν
α

The classical gravity above, which realises the �eld equation as an
identity implied by D/ θ = 0, rather than a classical equation derived
by variation, has a conserved current

J µ =< θ,Γµθ >

, to be integrated over an appropriate (d− 1)-surface, satisfying

DµJ
µ = 0

and cannot be interpreted as a probability current although it is the
thing that comes closest to this in this formulation. Rather, interpret as
suggested by the Dirac current a space-time vector Xa as such a prob-
ability current( also called probability vector) and a vielbein θ = [eaµ]
as a change of frame on such probability vectors. It is then understood
that a probability to observe an event is given by the Lorentz covariant
expression

Xa
OXO′a
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with Xµ
O the probability current of the observer O and XO′ the prob-

ability current of the relevant event O′. As an example, consider the
lab frame case when XO = (1, 0, 0, 0) 5 Then the above reads∫

dD−1xψ̄(x)Γ0ψ(x) =

∫
ψ̄Γ0ψ =

∫
ψ∗(x)ψ(x)

which is the frame canonically used in the Born interpretation of
quantum mechanics and also the usual �Born� expression. For non-
Dirac �elds there is a similar general expression that will be reviewed
later and it too has a hypercomplex nature, albeit on a bigger space.
One could now directly quantize the classical gravitational action

above to obtain a (disregarding the in�uence of the volume term in
the lagrangean) �nite theory and make a continuation of space-time
coordinates to attempt a SUSY version if we wished to include su-
persymmetry. Let us list the most basic ingredients of such a theory6

before we move on
We have, e.g , mass o�-shell �eld operators

θa = ea(x) =
∫

dDk
(2π)D e

−ikxa∗e(k)ε
a
e(k),

Γa = ea + e∗a,

ωa(x) =
∫

dDk
(2π)D e

−ikxa∗ω(k)εa,ω(k) + e+ikxaω(k)ε
∗
a,ω(k)

, with ladder operators ae(k) fermionic, aω(k) bosonic, and the various
ε's with various subscripts being polarization vectors. It should be
understood that θa 7→ Γa in the operator formalism for the θ term of
the above lagrangeans, and that in the above we considered classical
lagrangeans. The zero level level of the above �elds must be shifted so
that they vanish at in�nity, so that they are covered by the Riemann-
Lebesgue lemma of Fourier analysis, hence naïvely eaµ := δaµ+eaµ, where
the latter goes to zero at in�nity. Mass on-shell reduction is included by
inserting a delta function under the integral sign of the type 2πδ(k2 −
m2) to yield the usual expressions

Γa =
∫

dD−1k
2E(k)(2π)D−1 e

−ikxa∗e(k)ε
a(k) + e+ikxae(k)ε

∗a(k),

ωa =
∫

dD−1k
2E(k)(2π)D−1 e

−ikxa∗ω(k)εa,ω(k) + e+ikxaω(k)ε
∗
a,ω(k)

and it should be understood that such a reduction is only advisable
for considerations of the S-matrix at in�nity and perturbation theory of

5By convention and probability interpretation it is good to normalize X to unity.
6I conjecture this theory to be �nite to all orders, but have not had the time to do

con�rming computations and checks, and rather relying on a seeming isomorphism
to Yang-Mills theory in this statement. Would be very interested if someone could
take upon him/her the task of doing the checks or knows anything about it.
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this kind, where there are well de�ned mass states at in�nity. Instead
it is usually better to regard a continuum of such mass states (together
with a possible discrete part) implicitly by simply looking the variety
of �elds over a spec�c D-fold for S-matrices at �nite time. One thing
before jumping, though. When doing calculations in the above gravity
the reader will notice that to get correct dynamics S/he will have to
join particles with positive mass and frequency with vertices of the
opposite signs. This is hard to explain in that theory from the point of
view above but has to do with that the charge actually stems from the
propagation of the intermediate boson corresponding to non-compact
dimensions, as opposed to compact ones, with the signs multiplying
the mass charges on each side of the propagator being opposite, as the
boson propagation looks reversed in the noncompact dimension when
looking at the other end from the point of view of the other fermionic
particle. In a sense this states that the fermions only react with the
antifermions, and in order to get a fermion-fermion reaction one has
to reverse the momentum charge of one of the fermions, which then
re�ects in the vertex, mass being timelike momentum in a co-moving
frame of a particle at in�nity7 and the charge in the vertex being this
momentum. Later we will learn that this is a consequence of a double
Wick rotation in our conventions.
Instead, we abandon the above completely�for now� to be able to

have a probability interpretation for Dirac �elds, which are then also
supposed to be decribed by the above circle of ideas, then especially
having the Einstein condition is No-condition version of gravity in mind
as in appendix 8.1.3.
So here is the point where a �square root� of space-time, i.e spinors,

and hypergeometry come into play and that we get the link with the
previous part of this thesis, which dealt with hypermathematics. The
part of such hypermathematics that we will be dealing with is well
known, namely spin geometry and spin bundles, see the excellent book
by Lawson and Michelson, Spin Geometry. But we have not reached
the link to string �elds yet, nor the creation and annihilation of worlds
in such a formalism.

8.1. Summary.

7In a general enough �eld theory there are as many parity re�ections as space-
time coordinates, and in particular we can choose to re�ect only non-compact di-
mensions or only Kaluza-Klein dimensions.
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• Classical Einstein theory, which we came to the conclusion that
it was decribed by a Pauli term on vielbeins in a vielbein Klein-
Gordon term, was substituted for a spinorial Klein-Gordon the-
ory.
• This spinorial Klein-Gordon theory has then solutions gener-
ated by a spinorial Dirac-Yang-Mills lagrangean.
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8.2. The Link To The Former Part of This Thesis. To cure the
�nal defect outlined in previous sections we must, so that we can look
at amplitudes instead of probabilities, return to the spin(n,m) version
of the gauge theory above. Since we do not want to go to the cumber-
some ordeal of working with bundles over spinor space, i.e homogenous
twistor space, partly because of the di�culty of transforming back to
space-time and �nding the aprropriate isomorphisms of (non-exact)
cohomological theories in the general case we shall simply have it un-
derstood that this is the nature of the base, i.e as a grassmannian of
2-planes, algebraically corresponding to superpositions of background
states of two di�erent spins. A deeper study would force us to leave
the space-time scenario completely, with grave reprecussions for the
possible physical interpretation of such a theory as it is not easy to
transform back. That is, since we are in e�ect dealing with functions
f : Cath 7→ Cath taking values in spaces looking locally as

Cath :=
⊕⊗

Hi

and considering their geometry, and we do not know which are the
generating spaces, consider for example possible structures lying below
spinorial structures such as color, we are forced to take space-time as
a background and base for our bundles despite that we know better.
With maps in the global situation, just to mention the twistorial case,
severe constraints coming from the selfduality of the Weyl tensor to
achieve integrability of such bundles( see Atiyah, Manin, Drinfelt, and
Hitchin in the references) being such a criterion would in�ict massive
troubles, not to mention the diabolically laborious explicit formulae
for the transforms in even the most simple cases. Thus we can only
realistically expect to trade away the �ber and not the base at this
point.
Doing this, gives us the usual Yang-Mills theory over space-time

with only spin(n,m) being considered for an S-matrix at in�nity, and
G̃L(n+m,C) acting on the �ber for the �nite case, GL(n+m,C) being
the action on space-time covectors and G̃L(n+m,C) denoting it's lift,
then understanding that the spin(n,m) action induced by contravari-
ant functors lifted from space-time di�eomorphisms will correspond to
the action that preserves the notion of spin of such space-times, much
like the action of the biholomorphism group in the complex case with
S1 as space (see below).
Let's return to the spin(n,m) action and make the mathematical

aside that links to the former part of this thesis. The di�eomorphism
group has a lift to a contravariant functor on T ∗X and hence on the
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Cli�ord algebra Cl(X) generated by ea∗ ± ea∧, the sign corresponding
to a choice between two di�erent representations and a sign in the
relations de�ning the Cli�ord algebra, conveniently taken care of by
setting Γa+ = ea + e∗a, Γa− = i(ea − ea∗), both satisfying

[Γa,Γb] = 2ηab

Let us work with the latter,Γa := i(ea − ea∗), for now, and have it
understood that we we work with complexi�cations of space-time. If
we work in the ON-frame we have a reduction of the structure [frame
] bundle F to an SO(n,m) principal bundle. We would like to de�ne
a �hyper� analogue of holomorphic transformations, akin to local con-
formal transformations but in higher dimensions. Let us try to spot
this explicitly. If we have a di�eomorphism f : X → Y we have for x
a coordinate system on X, xi : xi−1(U i)→ U i ⊂ X, UU i ⊃ X an open
cover of X, and y similarly a coordinate system on Y , that

(y−1fx)∗ =
∂f

∂x
= Λ

will act on the frame bundle. We may, following Kobayashi's ideas8,
de�ne structural equivalence in terms of such compatibility, and so
we de�ne hyperholomorphism by saying that it is a di�eomorphism
preserving the SO(n,m) structure. We can easily see what this cor-
responds to in the case of the complex plane with holomorphisms f ,
there SO(2) ∼= U(1) is the reduced frame bundle, generated by

T1 =

(
i 0
0 −i

)
and satisfying

ΛT1Λ
−1 = Λ

(
i 0
0 −i

)
Λ−1 =

(
∂f
∂z

0

0 ∂f
∂z

)(
i 0
0 −i

)( ∂f
∂z

0

0 ∂f
∂z

)−1

= T1

so the U(1) structure is preserved. In terms of strings, this is like the
Virasoro algebra corresponding to holomorphic vector �elds, preserving
the action of an SO(2) on a S1 in the plane, i.e preserving spin. For
the case of space-time we might take SO(4) after Wick rotation, or,
going over to hypercomplex manifold look at rotations, and so get that
we must preserve SU(2) ⊕ SU(2) or SL(2,C) ⊕ SL(2,C) after com-
plexi�cation when acting with the gauge algebra. Not only do we wish

8S.Kobayashi, Transformation Groups in Di�erential Geometry, treats the
subject of automorphisms of di�erential geometric objects subject to various
constraints.
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to have automorphisms of space-time as a base to our Yang-Mills bun-
dles to have and induce this property, but we also wish the transition
functions to respect this, just like we when dealing with holomorphic
transition function in holomorphic string theory for a helicity preserv-
ing reason. Hence we have the notion of a spin structure, and we must
have transition functions that respect spin(n,m)⊕spin(n,m), to simi-
larly preserve spin. A manifold is 'patchable' in terms of spin structure
when the second Stiefel-Whitney class w2 , de�ned to be an element
of the Cech cohomology group H2(X,Z2), is vanishing. We may, for
obvious reasons, want to check that such bihyperholomorphisms, let
us call them spin holomorphisms, satisfy things that we associate to
conformal maps. The conformal property, i.e that a metric induced
by such a map is only a local conformal rescaling, is easily checked
by using the equivalent criterion v/ ′ = Λv/ , Λ ∈ C ⊗ SO(n,m) with
v := v/ ,Λ = cΛ0,Λ0 ∈ Γ(X±, SO(n,m)), c ∈ Γ(X±,C);

v′1v
′
2 = Λv1Λv2 = v1Λ

∗Λv2 = v1c̄Λ
−1
0 cΛ0v2 = |c|2v1v2

Spin hypergeometries, or simply spin geometries, are thus the good
thing to have as a base to our Yang-Mills bundles, them being gen-
eralized conformal manifolds of the correct kind. They preserve spin,
give conformal manifolds, and are quite common among the 4-folds.
The structure group consists of scalings times the appropriate spe-
cial orthogonal group.9 For example, for non-compact space-times of
Lorentzian signature a theorem by Geroch states that a spin struc-
ture exists if and only if a global frame does. We say space-times and
bundles are spin equivalent when there is a spin structure preserving
di�eomorphism of the base together with an induced bundle morphism
of a spin bundle. Among these hypergeometries, we have a very spe-
cial kind of manifolds, the hyperkahler manifolds-these correspond to
the mass-less states, and are supposed to be conformally equivalent to
Ricci �at space-times, i.e �at space-times. Then we have hyperbolic
manifolds, corresponding to positive mass squared, i.e by de�nition
positive mass, and elliptic manifolds, corresponding to unstable states
with negative mass squared and imaginary mass and momenta.

9Nevertheless we can very well generalize further by admitting rami�ed sections
and associated bundles so that horizontal lifts induce non-trivial monodromy of
base loops, much like the action of the group of permutations on the zeros of the
polynomial

P (z, w0) = z5 + f4(z, wo)z4 + · · ·+ f0(z, wo) = 0
for deformations in w-space loops in a great enough neighbourhood of w0 in C,
fi holomorphic, would interchange the zeros {z0,i} this would interchange solution
sections among local spin structures.
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8.3. Summary.

• To be able to describe the quantum dynamics of space-times we
resort to spin geometry and have di�erent physical interpreta-
tions for the spin(n,m) action on such a bundle module and the
complement in G̃L(n+m,C), which is the lift of GL(n+m,C)
acting on space-time covectors. Hypermathematics, as reviewed
in Part I, is thus supposed to cover this appropriate generaliza-
tion of the holomorphic calculus in string theory.
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8.4. Formulation of a Supposed Theory. Gravity, in the above
approximation, which admittedly has it's limitations( but that can
scarcely be circumvented within present day mathematics) is thus sim-
ply spin(n,m) − G̃L(n + m,C)10 Yang-Mills theory, governed by the
usual action

L = ψ̄iD/ ψ − 1

4
ΩµνΩ

µν

A spin(n,m)− G̃L(n +m,C) connection ω and a Dirac �eld ψ be-
ing the fundamental �elds, then supressing obvious features such as
ghosts and some constants. The �Einstein �eld equation� of this quan-
tum theory then stems from D/ ψ = 0 as the spinorial Klein-Gordon
equation

(�+ Ω/ )ψ = 0

which also bears the name the Einstein-Yang-Mills equation, this
because of previous calculations done in background space-times. And
what a divine coincidence that it should so rightfully claim this name
also in this second sense, as a true �Einstein �eld equation� of a square
root of space-time, see section 8.1 and the Einstein theory section.
Thus the only thing to a low order approximative calculation in the

above theory is taking into account a sign, substituting for the correct
coupling and �nding the correct group theory factor, and the rest of
an invariant element or S-matrix element can be 'ripped o�� previous
Yang-Mills calculations. Also, just to clarify, my statement is not that
one can use background spin connections to include the e�ect of a
background �eld, but rather that Yang-Mills theory in some extent
already is a theory of gravity.
In the above we used Ω, a notation usually reserved for a general

connection 2-form in this thesis, to emphasize that we can equally
well have connections that run non-diagonally over space-times with
di�erent colors and electroweak quantum numbers. It is important to
realize that the above gravity is probably but a low energy statement,
much like we today percieve the theories governing the three other
interactions, and that it does not make any pretense at being any more
general than each one of these other low energy theories.
We usually have it understood that we take the SYM or NC SYM

versions, this to be able to compare with supersymmetric theories such
as string theories and noncommutative theories.

10Again this depends on whether one is concidering S-matrices at in�nity or not,
and if we are working at tree level or not, because then we can use classical theory
in some extent. One simply does what one can handle in the various situations.
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9. Getting Down To Business

In this section we shall try to probe our idea, checking if it is realistic.
One of the �rst things we must do is to obtain various factors that
we have previously neglected. The �rst few calculations will be very
primitive, for often we do not need go into complicated matters to
prove something to be wrong, and if there is something �shy about it
we might as well know about this as soon as possible instead of waisting
time on something incorrect.

9.1. Problem 1: Basic Considerations. We have a supposedly 2-
admissible lagrangean, that is supposed to be variationally correct as
follows;

L = ψ̄D/ 2ψ

Upon variation we have, setting � = D∗D that

(�+R/ )ψ = (�+
R

4
)ψ = 0⇔ −(− 1√

h
∂µh

µν
√
h∂ν)︸ ︷︷ ︸

=−p2

ψ =
R

4
ψ

In the last equivalence a intermediate double Wick was performed. We
recognize 1) the latter term as stemming from the spinorial Hilbert-
Einstein term ψ̄R/ ψ, and 2) that we can relate a spin(n,m) connection
to a ON-frame connection on space-time canonically, and that R above
means the space-time Ricci curvature and set p to be the momentum
operator. On a momentum eigenstate this is

m2ψ = p2ψ = −R
4
ψ

hence

m2 = −R
4

Denoting a variable mass m as M we have M(x)2 = −R(x)
4
. Now

we note that the eigenvalues of −∇a∇a = P 2 correspond to constant
curvature con�gurations on d-folds and that any metric induced by
θ := ψ11 a is conformally equivalent to a symmetric manifold, which
has R(x) = constant, so we have a natural choice for a gauge slice,
which we call a conformal gauge slice. Hence we could write the space-
time curvature at in�nity as a term of negative curvature, i.e the free
mass term, which would then give the asymptotic curvature of the one-
particle space-time associated with a certain particle of mass m. To
be able to work with the same space-time background for all particles

11This is admittedly abusive, but stems from us regarding the spinors as vielbeins
for the metric on the �ber.
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involved in a process one instead shifts the curvature in the one particle
space-times to make them asymptotically �at by simply calling the
one-particle space-time curvatures mass, i.e for i indexing the various
particles

M2
i = −Ri

4
= −RB, i +Rint,i +R0, i

4
= −RB, i

4
−Rint, i

4
− R0

4︸︷︷︸
:=m2

0

= −RB, i +Rint,i

4
+m2

0

where it is understood that m2
0 is the bare mass squared at in�nity( we

always take the free �eld case at in�nity as a normalization). Having
noticed that our one-particle space-times correspond to AdS spaces in
the above, and that we can now use copies of a �at space at in�nity
to modell an entire collection of massive particles by simply having
the curvature of the various one-particle space-times bu�ered up in the
masses of the individual particles we now go on12.
Let us study the �vielbeins� ea = θa, [ea] = θ. We have, for a

any choice of gauge connection ω0 the equation Dθ = Θ, Θ = ea ⊗
Θa
bce

b∧ eb the torsion form. If we choose such a background connection
that satis�es D/ ψ = 0 by the super/hyper correspondence induced by
the vector space isomorphism

∧
T ∗ → Cl, θa ∧ · · · θc 7→ γa ∧ · · · γc,

we get a torsionless connection for a particular θ, and thus we have
made a choice of background( Again we emphasize that classically two
�elds,(ω, θ), are needed to state the choice of state.), i.e Dω0θ0 = 0 or
DωB

θB = 0. So we start with the background vielbein and this then
induces the background connection, which a priori has nothing to do
with the vielbeins. Picking the remaining connection as '�uctuations�
ω1 over this background connection we obtain ω = ωB + ω1. Let's
see what this means, we set our standard space Rn �rst. We have
ωB = 0, θB = 0, RB = 0,ΩB = 0, Ω = Dω. Then Ω = Ω1 = (d +
ω1) ∧ ω1 + ω1 ∧ ω1, hence Rµνρσh

σρhσρ = −4M2, h = hB + h1 is a
�mass� squared, �uctuating from point to point directly describing the
curvature of the state( one-particle space-time). Let's see if this can't
be derived directly from the Einstein �eld equation. Remembering
that all the mass is supposed to be a manifestation of curvature, which
means that we are not allowed to introduce mass terms freely when
equating the Einstein tensor to the stress-energy but only have the
kinetic term in the stress-energy, we get

12Incidentally this this could provide, with some work, a link to the AdS-CFT
correspondences that have appeared in recent years. Actually, we do so quite di-
rectly in Part III and IV, when we know more.
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T µν = 2√
h

δL
δhµν

= {L =
√
hhσρ∂σφ∂ρφ

∗}
= 2√

h
1

δhµν
[ 1
2
√
h
hhσρδhσρh

κτ∂κφ∂τφ
∗ −
√
hhσκhρτδhσρ∂κφ∂τφ

∗] = −2∂µφ∂νφ

the bar being the usual trace-anti trace operation. Hence

Ric = −16πG∂φ⊗ ∂φ∗
and setting φ ∼ e−ikx we get, remembering the conjugation symbol

on the second φ term and using that ¯ is an involution

Ric = −16πGk ⊗ k|φ|2

which gives
R = −16πGk2|φ|2

con�rming previous suspicions. Incidentally the formula former to
the last formula also con�rms our suspicion that the Hilbert-Einstein
action is only a classical action and that the Einstein term needs to be
�smeared out� by a probability density. This is because we want the
Ricci term R/ to be associated mainly with the kinematics of the �eld,
so the above really is slightly incorrect since we are equating variations
of classical lagrangeans to quantum lagrangeans, something that we
really are not allowed to do. We are probably just lucky that it comes
out right anyway for vielbein gravity.
According to us things go classically as

ψ̄R/ ψ  
1

16πG
Rphysical

hence

ψ̄
R

4
ψ  

1

16πG
Rphysical

thus, setting g−2 = 1
4πG

, and setting 1
g2
Rphysical = Rmathematical, i.e

for the Lie algebra generators

gTαmathemtical = Tαphysical

we have our constants and know where to put them. Let's check how
this goes in previous calculations which were in mathematical units.
Then R

4
= −M2(x), hence by R 7→ R

4πG
we get

R

4
= −4πGM(x)2 ↔ R = −16πGM(x)2

precisely the result from the former formula, but with no factor |φ|2
appearing-just as it should be, since we in the above equated a classical
variation to a quantum variation, and if we only had quantum versions
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on both sides when doing the �rst calculation the amplitudes would
have dropped out on both sides. We directly realize that g =

√
4πG

can't apply for all cases, since that would mean that all particles have
the same gravitational charge, so looking at the attractive potential
generated by such a massless ω �eld we have with αG = g2

4π
that

V =
αG
r

=
G

r
gives that it would be appropriate to associate a factor M to this
expression, hence,

gG(M) =
√

4πGM, αG(M) =
gG(M)2

4π
would be appropriate, remembering to take into account various signs

when doing calculation later.
We still worry about how we are distributing the charge among the

Lie algebra generators, need it be as above or is it the momentum that
is supposed to be distributed? A simple check shows, however, that
such a partition of the mass would trivially have been associated with
the Cli�ord algebra and not the Lie algebra, so we are at least right on
track when it comes to that issue.
Let us return to the issue of the metric. Presently, the way we distrib-

ute the signature seems to be arbitrary, either MTW or ��eld theory�
coventions�the latter is the way we called the set where p2 is positive
for causal momenta� so we need to investigate this further. We may
agree that it needs to be motivated further than by only reasons of sta-
tistics among the D-folds. It could be understood as stating that the
MTW metric is �God-given�, or , better put, simply the correct one,
but also that it must be achieved by a continuation�at least if our ge-
ometrical treatment of mass is to be correct. Thus the choice we made
in our conventions, η = −diag(1,−1,−1,−1, · · · ), is supposedly not
accurate to have at the end of a calculation. Surely there must be as
simpler reason than the one listed above�indeed there is�postivity of
energy combined with vanishing of �elds at in�nity. In our conventions
hitherto, we have written�let us for simplicty concentrate ourselves
on classical �eld theory on a worldline�

L = H− pkq̇k =< p, q̇ >,
p = (H, p̄), p̄ = [pk],
q = (t, q̄), q̄ = [qk]

which correponds to the choice

pk = − ∂L
∂q̇k
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This can be seen from

H = L+ pkq̇k = T − U − 2T = −(T + U)

and we see that the Hamiltonian with our conventions is the negative
of the usual one, which is supposed to equal the energy classicaly, so
it gives negative energies. This comes from us incorrectly treating the
space-time signature, which is thus directly correspondent to the sign
of the Hamiltonian. Of course, we can't pick pk = ∂L

∂q̇k
with our ��eld

theory� conventions, which are opposite to the ones of most people
using classical mechanics, because that would give

L+ pkq̇k = T − U + 2T = 3T − U
which corresponds to nothing at all�except perhaps a mistake. The
above is so simply because we �derived� our formuals from a Noether
current, which not necessarily is associated to the Hamiltonian with
a correct sign. Actually, in this particular example we should have
included a minus sign before equating it to the Hamiltonian when we
derived the concept of a lagrangean as something that generates de-
formations of functions along a worldline. Correcting for this sign, we
write a new formula for the lagrangean that that is corrected to give
positive energy,

L = pkq̇ −H =< p, q̇k >MTW

and that is actually also what is needed to get vanishing probability
densities at in�nity, since now

Z ∼ e
R
LE ∼ ei

R
LM ∼ eW [χ

AN
1 ,··· ,χAN

N ]

, with LE including a factor being the negative of the Hamiltonian,
as opposed to the previous case, so that idtM = dtE. One also checks
the positivity of energy above by

i∂tZ ∼ i∂te
i

R
pk q̇dt−Ht = i∂te

i
R
pkdqk−Ht

= iδt(−iHt)ei
R
Ldt = Hei

R
pkdqk−Ht

∼ EZ

just as it should be on an eigenstate. In our previous conventions
we accounted for this by a minus sign in the exponential, so we can
recover the new de�nition of Lagrangean� and consequently metric�
by moving in the sign in fron of the integral under the integral and
absorbing it into the metric. Hence

Z ∼ exp [−i
∫
LOld] ∼ exp [i

∫
LOld︸︷︷︸

:=LNew

]

159



and of course

LNew = −LOld = −(H− pkq̇k) = pkq̇k −H

again corresponding to postive energy. So we see that our sign choice
was made in a consitent manner, since it is equivalent if one includes
opposite phases in the PI exponential and corresonding part of the
e�ective action. The latter thing is very important, because it can
make something attractive repulsive and back and forth.
Let us sum up: We have to use the MTW metric to get the correct

physical metric, or to take into account this by having a correcting
opposite phase in front of that term in the exponential in the S-matrix.
We make a couple of remarks, this so that the reader remembers what
the discussion in the latter part of this section relates to:
Remarks:

(1) The double Wick rotation above is canonical and supposed to
be well known in the context of AdS-CFT correspondences.

(2) As AdS space here we de�ned an arbitrary pseudoriemannian
manifold of constant curvature. Any riemannian manifold can
be brought to such a form by a conformal transformation, where
we assume to have such de�ntions so that the proper riemanni-
ans are a proper subset of the pseudoriemannians.

9.1.1. Summary.

• We associate, in physical units with a dimensionless Ricci and
after a double Wick rotation,

R = −4g2M2(x) = −16πGM2(x).

• We have a split of the curvature on a one-particle space-time as

R = RB +Rint − 16πGm2
0

• We have gravitational charges and coupling constants

gG(M) =
√

4πGM, αG(M) =
gG(M)2

4π

9.2. Problem 2: 2-Surfaces and Tachyons. We would like to make
a study of plausibility of the above. According to us states of positive
mass correspond to states of negative curvature, and this manifests
itself as the abundance of hyperbolic manifolds. We might check this
in dimension 2. We restrict to the compact orientable case. From
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previous lagrangeans we have by the interaction hamiltonian Hint =
R/ , counting curvature with a minus sign for convinience, that

Z =
∑
g∈N

d(g)e
Rg
4
β

with d(g) the degeneracy at genus g and Rg the curvature at genus g. If
we count manifolds with di�erent complex structures as inequivalent,
then the great uniformization theorem of Riemann surface theory gives
d(g) as the volume of a �Bers� ball bounded by the radius Λg. Hence,
setting, q = e−

β
4 , β ∈ C+,

Z =
∑
g∈N

d(g)e−M
2
gβ = deg(0)q−1 + deg(1) +

∑
g∈N+2

deg(g)q,M2
g = −Rg

4

Large β means small q so then we see by the above that the sphere S2

will be quite probable by cutting o� the sum. On the other hand if we
include all states we see that the probability for a tachyonic measure-
ment P is

P = lim
N→∞

q−1

deg(0)q−1 + deg(1) +
∑

2≤g≤N deg(g)q

Realizing that the degeneracy for g ≥ 2 is

d(g) =
2πd/2

Γ(d
2
)

Λd
g

d
, d = 3g − 3

which is diverging for constant Λg as a function of g since Γ(z+1) =
z!, we get the probability P for a tachyonic measurement as P = 0 for
all β as a naive expectation. So this check turned out ok. Actually,
in higher dimension the abundance of hyperbolicity is very prominent,
just as it should be physically from the above perspective. Indeed a
theorem of Lohkamp states that every homeomorphism type can be
endowed with a hyperbolic curvature. We also recognize by the above
that if we take the entropy S = lnZg of each indidual state we obtain
S = 4πGM2

g , which is the Hawking entropy formula, so this at least
seems to be compatible with what we to some extent think that we
know about entropy in gravity.

9.3. Problem 3: The Crucial Sign. We would like to derive the
attractive feature between two particles of positive mass and energy
after a double Wick rotation. First of all we notice that the process of
Wick rotation is really not entirely consistent for we set kµ 7→ −ik′µ,
γµ 7→ iγµ, gµν 7→ (−i)2gµν , without really introducing an induced
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metric g', which would have made all expressions invariant under Wick
rotations, thus spoiling the point of the rotation. e.g m2 is not mapped
to −m2, which would have been consistent. Thus we have to be careful
as this is not entirely systematic. As an example, we had (�+m2)A = 0
letting A be the gauge boson(introducing an arti�cal massm), and this
gives (−�+m2)A = 0, which is not consistent. We prove the attractive
feature by looking at the propagators of the gauge bosons. The relevant
part of a matrix element, say,

−igTαγµ · · · −igµν
p2 + iε

· · · − igTαγν

is mapped ( if everything was consistent) to

−igTα(γµi) · · · +igµν
−p2 − iε

· · · − igTα(γνi)

We recognize the ε part to be a small compact deformation of di�er-
ential operator that we could identify as a mass shift at in�nity, which
we know by the above that we are not consistent about. Setting iε := 0
and then reclaiming it with a positive sign (or simply ignoring to have
the epsilon from the very start) that gives

−igTαγµ · · · +igµν
p2 + iε

· · · − igTαγν

so that the double Wick in e�ect shifts the phase on the boson propa-
gator. That is the same thing as turning attractive into repulsive, for
one can now move this sign to either vertex from the propagator.
We can see the consequence of the double Wick rotation in the la-

grangean directly, since a free propagator is the inverse of of the term
between to the two �elds in the quadratic term. So

A�A 7→ −A�A
reverses the sign of the kinematic term relative to an interaction term
and thus makes a repulsive interaction attractive. The last reasoning
amounts to only doing a classical reasoning about the lagrangean.
As far as practical concerns of �eld theoretic calculations this is best

remembered by associating a priori a minus sign to the end of a prop-
agator so that the charges on the two ends of a propagator are always
a priori opposite.

9.4. Problem 4: The Schwarzild Metric. Let us see if we can't de-
rive the Schwarzild metric out of �eld theory with the above. We know
that J is a conserved current, i.e DµJ µ = 0, reminding of DXX = 0 or
Dae

a = 0 from classical gravity, where we can associate the latter with
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a current on space-time. So let us equate J µ = Xµ for a vector �eld X
that is covariantly conserved, where J µ is understood to be evaluated
w.r .t space Σ. We want to get the metric hµν . Now, for the case we
are considering, space-time is more or less void of currents, except for
this chunk at the origin which is the star, and is evolving in time-like
direction. Hence we write

iD/ ψ = 0, D∗Dω = J = ρδd−1(x)e0

with ρ a temporal density set to unity in a unit mass system, and
where we imagine ourselves to take averages over Lie algebra indices.
If we expand around the background that is given by Dθ = 0, this is

D∗Dω0 = δd−1(x)

i.e for a �xed time t := t0, remembering that ω does not depend on
time,

ω0(x̄) =
−1

(d− 3) ||x||d−3

1

µ(Sd−2)

µ(Sd) the Euclidean Lebsgue volume of Sd. In dimension 4 this is

ω0(x̄) = −1

r

1

4π
We need to include the gravitational coupling constant. We have

g =
√

4πG, g(M) =
√

4πGM , i.e

ω0(x̄) = −g(M)2

r
1
4π

= −GM2

r
= −GM

r
M

Where we de�ne a �new� radial variable r
M

with [ r
M

] = [LENGTH]
dimensions instead of [r] = [1] and so get

ω0 = −GM
r

δh00 = 2V , V the potential, can now be computed, hence the tem-
poral component of the metric is

h00 = 1− 2GM

r
Remembering that a vacuum Einstein manifold is maximal in vol-

ume, and hence the volume element constant under topology preserving
vacuum deformations, we get

h = (1− 2GM

r
)dx0 ⊗ dx0 − (1− 2GM

r
)−1dr ⊗ dr − r2dΩ2

, our Schwarzild metric.
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But this calculation has shortcomings, because it seems a little bit ad
hoc. It is really just an application of a post-Newtonian approximation
to gravity, or at least so it seems, so it is really not strange that we come
out right. Indeed it would be strange if we did not come out right that
way. So we have to put it under severe critisism. To remedy this we
may proceed in di�erent ways. Let us �rst notice that a perturbation
δeaµ; e

a
µ = eaµ,B + δeaµ gives

hµν = hµν,B + ea{µ,Bδea,ν} +O((δe)2 = hµν,B + ea{µδea,ν} +O((δe)2

where {} is supposed to denote symmetrizer of �elds, and B is for
background, as usual. Hence we identify as follows;

hµν = hµν,B + ea{µδea,ν}︸ ︷︷ ︸
:=2Vµν

+O((δe)2

Hence, if we de�ne V = tr[Vµν ] = hµνVµν = hµνB Vµν + O(V 2
µν)

13, we
get

V = tr[Vµν ] = tr
ea{µδea,ν}

2
Thus if we only retain the temporal behaviour for this average per-
turbation we obtain the post-Newtonian approximation, so we seem
to come out �ne, despite our original disbelief. Before going on, we
note that the formula for Vµν seems to be a formula for a variational
current, indeed this is already pointed out in the Hilbert-Einstein ap-
pendix of this part, where we did not directly see this link to the �ge-
ometrical� potentials V , Vµν . It should be pointed out that the above
formula, which relates one kind of �eld to another which are truly
functionally independent, is really only valid on-shell because, e.g., the
post-Newtonian approximation is only valid on-shell, just like the usual
formula for probablity currents in quantum mechanics is a consequence
of the Schrodinger equation, another on-shell criterion. As should be
clear from the discussion in Part III and IV, one can even deduce that
it is the same on-shell criterion.

9.5. Problem 5: Hawking Entropy. Roughly, entropy is a measure
of the e�ective action of a con�guration that is prescribed as �vac-
uum� on a D(d − 1)-brane. We have, classically, with a 2-admissible
lagrangean,

S[ACTION ] = g2

∫
ψ̄R/ ψ = g2M2

∫
ψ̄ψ = g2M2 × 1 = g2M2 = 4πM2

13This latter identity is easily obtained by the usual formula for in�nite geomet-
ical series by using it to obtain the inverse of a slighty perturbated operator.
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To obtain the same thing more rigorously one can exhaust R4 from the
interior and use plane waves in a normalized integral. So we have

lnZ = −4πM2

but then < U >= −∂βlnZ = 0, hence with S being entropy and W
free energy

S = kBβW + kBlnZ = 4πkBM
2 =

1

4
kBA

A the area of the hole. It has to be observed that the above holds
classically but only for a 2-admissible case, which is according to us
not what to do �eld theory on, at least not in this case, although it is
what do string theory on.

9.6. Problem 6: Coulomb/ Black Hole Scattering and As-
sorted Scatterings. Let us tentatively try to write the 0/4 space-
time diagram for n exterior Xµ(x) = ψ̄γµψ( which we may, for reasons
soon to be clear, call string at a base point x.). It is then understood
that we can interpret Xµ as a propagator of a Dirac particle �biting�
itself in the tail, so that that this would be looking at the propagator as
a dynamical object bounded by two Dirac point particles with opposite
charge.

X = 

x

µ

Figure 10. A Dirac point particle biting itself in the
tail can be seen as a closed string, if we let the Chan-
Paton factors be usual Dirac point particles. We call the
spot where the Dirac particles, or Chan-Paton factors,
coincide the base point. In this section we generalize
this to hold for all particles in string �eld theory.
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with the scalar probability density expression φ(x)φ(x)∗, now inter-
preted as the amplitude for a scalar sel�nteraction being the predeces-
sor in elementary quantum mechanics.
Thus we would look on a string going o� to in�nity as a diagrammatic

expression for the probability current going o� to in�nity associated to
a particle. The above can obviously not be made to work for gauge
bosons, but we will shortly see that there is something similar. We
can write the diagram for space-time probability currents, which we
simply refer to as a space-time diagram, and sometimes add the su�x
0/4, then emphasizing that a �point� particle can be interpreted as a
4 dimensional soliton in dimension 4, with the 3-dimensional spatial
behaviour of our our world as the behaviour of a cartesian product of
wave front sets.

X
X

X

X

X X

X

1

2
3

4

5
6

7

Figure 11. A diagram over the outgoing probability currents, i.e X
�elds for the restricted case above, looks like a �string� diagram. That
is quite odd, as it came out of (NC) YM/SYM. The blob in the middle
is supposed to be the total S-matrix working on the in states. In the
above diagram at least one of the Xi must correspond to a gauge boson.

The probability for such a diagram, where we now use ψ, φ to denote
in and out state respectively, is given by

X∗
φXψ =< ψ|φ >< φ|ψ >= | < ψ|φ > |2

with Xφ := |φ > ⊗ < φ| = |φ >< φ| and similarly for ψ, and
we call X probability vector. We notice before going on that X can

166



be interpreted as an endomorphism of a Hilbert space, and thus the
'non-commutative� nature of X, in particular for the case of spin and
SU(2)

X∗X ′ = XjX ′
j = | < ψ|φ > |2

which is related to a quaternionic perspective. It matters little which
representation of a noncommutative theory we use, or to to focus on one
speci�c noncommutative or hypercomplex theory, rather it is noncom-
mutativity in general that is prominent and important-as long as we
force the �elds to be space-time �elds( probability currents ), because
then we get stuck with the above expressions. The duality above can be
realized by hermitean conjugation and a trace, i.e tr[X†X ′]. Notice that
the above expression applies to any in state, including gauge bosons
etc-it is the generalization from the spinor to (non-commutative)space-
time case to the general case of any Hilbert space involved and it's
(non-commutative) endomorphisms.
The diagram above would then have probability proportional to the

square of a usual sum of Feynman diagrams;

X∗
ψXSφ = | < ψ|S|φ > |2

and everybody nows how to calculate the latter. In view of this we
can now restate the link between 2-admissibility and 1 admissibility,
i.e between NC SYM and M(atrix)-theory when one looks at the su-
persymmetric version. Let us generalize this a little bit further, we
put in factors MAB that take care of symmetrizations etc that may be
necessary;

XC
φ := MC

AB|φA > ⊗ < φB| = MC
AB|φA >< φB|

By the same token the following theorem is the resolution of the AdS-
CFT correspondence, at least from the perspective depicted above. Let
us de�ne some of the ingredients;

De�nition 9.1. We set

X = X0 + X1iθ
i + X2ijθ

iθj + · · ·
Φ = Φ0 + Φ1iθ

i + Φ2ijθ
iθj + · · ·

A = A0 +A1iθ
i +A2ijθ

iθj + · · ·
D = θ(∂/ + A/ ) + ∂θ
D = Γµ∂µ = Γa,−(∂a,− + Aa,−) + Γa,+(∂ ¯a,+ + Aa,+)
D± = P±Γa∂a,± = σa±∂a,±

, D− being the anti-holomorphic spin-gauge Dirac operator(we regard
the 10/8-fold as being a holomorphic 5/4 fold which is a real in�tisi-
mally transversally complexi�ed 4/5-fold. In the above we use a com-
plex split of the dimensions only as a convenient notation, and could
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equally well have done a real split or a foliation/strati�cation. In the
following D denotes the Dirac-Kahler covariant superderivative given by
γa = ea + ea∗, as opposed to D above which is w.r.t to γa = i(ea∗− ea).
˜ denotes charge conjugation in the below.

Theorem 9.1 (A fundamental theorem). We have the equivalence

ZM = X∗SMX = ZZ̃ = Φ̄SSYMΦ¯̃ΦSSYM Φ̃.

with ZM the partition function corresponding to a 2-admissible

LM = X∗D2X

w.r.t to the X �elds in the corresponding classical/quantum action, and
Z corresponding to a 1-admissible

LGauge−SYM = Φ̄DΦ

on, say, T+XC the antiholomorphic part of a transversal complexi-
�cation with + denoting antiholomorphic part. The important thing
about the above is not the holomorphic/antiholomorphic factorization,
which is there only to make things cute, but rather the split of a two-
admissible theory on a even dimensional D-fold into two 1-admissible
theories on half the dimension. Notice that since we know that the
states at in�nity(i.e the equilibrium states) are AdS this means that
we expand the SYM around AdS con�gurations to get approximate
evaluations in �eld theory according to previous remarks and canoni-
cal practice. See after the proof for further remarks. This theorem was
conjectured by Maldacena four years ago.

First sketch of idea, for rigorous versions see Part III, theorem 1.1 and 6.1.
We have for the lefthand side

ZM =

∫
DXDX∗DAe−iSM

SM corresponding on a worldsheet to

SM,CLASS. =

∫
√
γdzdz̄dθdθ̄(X∗D/ 2X +AD/ 2A)

, which is how string theorists prefer to do things presently. In a
third quantized D3-brane perspective, corresponding to a cured version
of SUGRA, manner this is, including a Yang-Mills term,

SM,Q. =

∫ √
hdzDdz̄DdθDdθ̄D(X∗D/ 2X +AD/ 2A)
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Hence we have, splitting the covariant superderivative D as D = D+ +
D−,

ZM =
∫
DXDX∗DAe−iSM

=
∫
DA+DA−e−i

R
A+D/ 2

+A++A−D/ 2
−A−SDET [D/ 2]

= (
∫
DA+e

−i
R
A+D/ 2

+A+SDET [D/ +])(
∫
DA−e−i

R
A−D/ 2

−A−SDET [D/ −])

but then we recognize the factors as

ZSYM± =
∫
DΦ̄DΦDA±e

−i
R √

h+dDzdDθ(Φ̄D/ Φ+A+D/ 2
+A+)

=
∫
DA±e−i

R
A±D/ 2

+A±SDET [D/ ±]

If we have it understood that we have already integrated away the
transversal degrees of freedom in the YM term. Thus we are, within the
limitations of the ill de�ned path integrals above, formally done. �

Now some important remarks about the above theorem. Later, in the
next problem, we will be dealing with the invariances of the involved
lagrangeans. What we have done above is truly to implement relative
cochains via integration transversal to the SYM degrees of freedom.
The SYM is on( the �ber of..), say, T+XC, TXC = T−XC ⊕ T+XC

in this language, but it is better to have it understood that we one is
working with direct limits of relative chains (in the naive space-time
picture.). Another bene�t of the above theorem is that it seems to o�er
a resolution to the issue of extra dimensions in string theory and am-
bigous compacti�cation. The world is the SYM part( this also comes
independently from previous basic reasoning), so it is e.g 5 dimensional
for type II comparisions. There are 4 dimensions, plus a last dimension
corresponding to deformations of space-time, i.e precisely the K.K di-
mension of the Klein-Gordon equation, and when doing string theory
we are actually doubling arti�cally. With hindsight, this can be viewed
already either when one is considering e.g Kallen-Lehmann spectral
representations of propagators, the Klein-Gordon equation or the con-
�guration space perspective of classical multiparticle space-time and
the transversal deformations that move around the solitons we perceive
as particles. The last M-theory dimension is then supposed to corre-
spond to deformations of the various string theories into each other.
Perhaps we canuse this later to make the corret kind of dimensional
reduction.
With this in mind we can start to calculate various crossections. We

calculate �rst Coulomb scattering of a particle of mass m bouncing on
a �eld created by a mass M . In the above the masses denote masses
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of Dirac �elds and the ω is to denote connection and associated parti-
cle. We begin with the space-time diagram corresponding to Coulomb
scattering;

S

m

m

M

M

= S

M m

M m

Figure 12. Scattering of particles of mass M and m. A �string�
space-time 0/4-diagram in non-commutative space-time corresponds to
the square of a Feynman diagram of spinorial origin. This is be-
cause X �elds, which correspond to space-time vectors, correspond to
Hom(H,H), the Hilbert space H being an appropriate spinorial module
S, and so are 2-tensors of a spinor module.

In the above it should be understood that we really cut away half the
diagram and replace it by a �xed Coulomb source, since we assume the
M -particle to be virtually una�ected by reactions, so that it becomes
like usual Coulomb scattering with only a mass bouncing on an external
�eld. If we only calculate the Feynman diagram with only coupling to
the background �eld and no radiative corrections( corresponds to genus
nill case for space-time diagrams) we obtain a di�erential crossection,
including a group theory factor of 214

14R.Corrado in his Ph.D. thesis skips the center of mass motion part of the alge-
bra. Not sure about whether that is correct, since the related transversal complex-
i�cation in the physical dimension makes sense if one goes to complex Lie groups,
by taking this into account and using a complex version of a Killing form. After
some consideration, though, I think he is correct and I'm wrong, because we always
only retain unitary degrees of freedom in the S-matrix.
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dσ
dΩ

= 2× α2

4|p̄|2β2sin( θ
2
)4

(1− β2sin( θ
2
)2)

= G2M2m2

|p̄|2β2sin( θ
2
)4

(1− β2sin( θ
2
)2)

with p̄ being 3-momentum, and β being the velocity of the incoming
m particle. The more usual M +m → M +m (or M +M → m +m
by crossing symmetry), being the general case described by the above
diagram, can be evaluated to

dσ
dΩ

= 4× α2

2k2(E+|k̄|)2(1−cos(θ))2 ((E + |k̄|)2 + (E + |k̄|cos(θ))2 −M2(1− cos(θ))2)

in the CM frame, with |k̄| =
√
E2 −M2. In particular the above gives

for M := m the amplitude for Bhaba scattering.

9.7. Problem 7: The Force Between TwoWilson Loops/Particles.
This is a computation that we make just to get a little bit of intutive
feeling for what is going on, afterwhich we in Problem 8 return to the
more serious issue o� the symmetries of the lagrangean. We would like
to compute the force between two Wilson loops, since we now know by
the above that we should identify strings with such loops. Thus what
we are essentially doing is calculating the force between two particles.
A Dirac quantization condition for a loop yields for the mean �eld

strength, which we denote by B, that

B = −2π

g

n

A

n ∈ N, A the area inclosed. The minus sign is an artifact of the
present convention of having a minus sign in the exponential in the
path integral, and the only reason for us including is it to �x a sign
that we would have been forced to �x later anyway. This gives the
force F by the Lorentz force law as

F =
g

2π
(−2π

g

n

A
) = {A = 4πr2, r :=

r

G(m)
} = −Gm

2n

r2

n ∈ Z as in n ∈ π2(S
2) and inherited by π1(S

1) living on the equator
which is the place where the original loops, bordant to D+ and D−
the original hemispheres, live and coincide. What could be non-trivial
about the above is that the area should be the area of a sphere, hence
we derive it. In the action we have

−i(S+ − S−) = −i(
∫
∂D+

Φ̄+ω−Φ+ −
∫
∂D−

Φ̄−ω+Φ−)
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Propagator

String

Einstein

Einstein

Klein

Figure 13. AWilson loop propagating in a �fth dimen-
sion. Looking at the propagation of the loop rather than
the propagation of the base points will double the dimen-
sion in space-time. The above is from the 10 dimensional
point of view, looking at Einstein's 4-dimensional space
and Kleins �fth as subspaces. Kleins �fth dimension is
e.g. necessary in order to interpret mass as curvature,
and implies a simple homotopy type for X± if we were to
interpret it in the original sense of Klein, which we need
not do, see Part III.

hence, either using ∂D+ = −∂D− from ∂S2 = 0, or setting ω+ =−ω−
( We cannot turn both the orientation of a loop at the same time as
we turn the winding direction around the loop, that would be the same
thing as doing nothing at all.) that gives

−i
∫
S2

dω

ω =< ω+ > the usual Lie algebra averaged connection, i.e. in e�ect a
U(1) connection.
Please notice that the above corresponds to computing the classical

part of the VEV
< W (C+)W (C−) >

C± = ∂D± and di�erentiating in appropriate manner the natural log-
arithm to get the force. In the above W (C±) are the various Wilson
loops. This computation, however, has to be questioned. We shall let
it be for now, since it gave us intuition and that was what we were after
rather than accurate or correct treatment, but notice that Corrado in
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his Ph.D. thesis did some computations that seemed similar in nature,
so we may have another link to AdS-CFT correspondences here.
Arti�cially de�ning C=PT, we notice that since we have to turn

time on the latter sheet bounded by, say, C+ when patching we can set
P = ,̃ thus in reducing the space-time dimension we pick a de�nite he-
licity for particles involved (this is one reason for why the holomorphic
calculus by way of analogy was used in the reasonings above), since
that amounts to picking a particle with or without a .̃ Doubling the
dimension and having stringy coordinates, i.e having 10 dimensions,
corresponds in some sense to taking into account both helicities, while
only having usual space-time should correspond to having a de�nite
helicity. And this then ties (in some sense) to the idea of a complex
holomorphic space-time in a most natural way.

9.7.1. Summary and Important Points.

• Gravity was found to be �eld theoretically described by a Pauli
theory associated to 2-surfaces, a theory which we could take
a square root of, leading to a Yang-Mills theory, and thus re-
duce the con�guration space dimension to half the dimension.
Gravity was thus described by SYM on AdS spaces (notice
that any Riemannian manifold is conformally equivalent to a
space of constant curvature), with Wilson loops corresponding
to usual strings from the 10-dimensional perspective. These
spaces, which are Poincare duals to the string base point, are
then supposed to correspond to massive particle states at in-
�nity. Simple checks were made to try to check plausibility so
far.
• Spaces/particles were subdivided into tachyonic, massless, and
usual states according to if they are, after having been reduced
to constant curvature and with a double Wick rotation included,
of positive curvature, zero curvature or negative curvature re-
spectively. Spaces are particles according to the above perspec-
tive, as we identify with a certain space a certain geometry; the
particles are solitonic con�gurations on the various one-particle
space-times.
• The smooth topology on a space decides it's curvature by de-
ciding the connections and metrics which are valid, hence the
topology induces the mass spectrum.
• In order to be able to describe a geometry of probability densi-
ties (space-time) by use of half-densities(spinors, quantum me-
chanics) we work with probability vectors(e.g matrix spinors).
These are naturally giving string space-time a noncommutative
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coordinate structure since string space-time corresponds to the
2-admissible lagrangean picture.
• A picture dual to SYM in a certain dimension would according
to above be string theory in double the dimension in a certain
manner described above. A sketchy proof of this was presented.
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9.8. Problem 8: The Symmetries of The Actions Involved.

9.8.1. Problem 8, Part A: Introduction and Formalism. This section is
organized as follows; First we de�ne the actions and component �elds
from the 2- and 1- admissible perspectives. Subsequently we prove that
various symmetries are satis�ed, concentrating on the lagrangeans that
are not so well known and putting little energy on the Y.M. term, to
which we assume the reader familiar.
We proceed in general manner. Let

X =
∑

Xµ1···µk,α1···αl
dxµ1 ∧ · · · dxµkdyα1 ∧ · · · ∧ dyαl

where µi is a space-time index, αi brane indices, x space-time coordi-
nates, y brane coordinates. The α indices can be made to transform
with an arbitrary weight relative to space-time, and conversely for the µ
indices relative to the brane. The �eld X(x, y) depends on both x and y
coordinates, which in the tangent picture corresponds to the base points
of the exponential maps on the target space-time and the possibly sin-
gularly embedded brane respectively. For example for Y-branes, the α
indices transform with half the weight of space-time indices, while for
X-branes, i.e. usual D-branes, they transform with full weight. It will
be important for us to have the generality of all admissibility types, for
we will want to model all families of theories for D-branes of arbitray(
but will restrict to integer in this thesis) dimension. That is, after all,
one of the things which will make our hypothesis less arbitrary. Before
expounding how these, say, rational weights are e�ectuated, we must
clarify a couple of things;

(1) We associate dxµ to θµ supercoordinates of full weight while
associating dyα to θα with arbitray, say half for now, weight.
�Usual� formalism is obtained by taking either space-time or the
brane Y , where we shall use Y for a brane that transforms with
arbitray weight w.r.t space-time, and replacing the integration
over it by integration over a point ∗, i.e. e.g. setting∫

εX = Id⊗ PV0 ∗V
T ∗X ,∫

εY = Id⊗ PV0 ∗V
T ∗Y

PV0 the projection onto the exterior cotangent space of zeroth
degree. Hence we retain usual Berezin integration times the
identity, so that valuation over a point of the zeroth degree of
the Hodge dual corresponds to superintegration and restriction.
One proves easily that these interpretations mean that while a
di�eomorphism will induce a contravariant functor on forms it
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will be covariant on space-time-coordinates, just as it should be
in a superformalism.

(2) For the most general situation one must interpret ∧ as sym-
metrizer of arbirary type, �xed in the given situation, which
may e.g. be associated to a speci�c vacuum labelled by vari-
ous more or less exotic total charges. Since each term in the
lagrangean, i.e. each tensor valued current, has a well de�ned
trace functional to the appropriate �eld over which the tensor
algebra is de�ned, this is a quite natural generalization. An-
other generalization, actually quite necessary for our purposes,
is to introduce a-indices, as to obtain an arbitrary a-tensor.
Dualities for such indices are then implemented as usual, in
particular in between terms that arise multiplicatively such as
in the super-Polyakov term. Thus we are in e�ect dealing with
manipulations of the tensor ring over an in�nite dimensional
space when regarding our generalized �eld theories, where the
tangent space is associated to the one particle Hilbert spaces,
and doing these manipulations in such a way that they have
a closed action within di�erent factors of di�erent irreducible
splits of this tensor algebra, which all belong to di�erent spec-
tral representations in various charges of this tensor algebra
(See also Part III, Geometric Quantization of D-branes).

Let us de�ne as follows;

De�nition 9.2. A supersymmetry is an isometry of a Z2-graded metrized
module acting non-diagonally on the grading.

We will be interested in structures similar or covered by this de�n-
tion such as quadratic vector spaces, pseudohermiteans, etc. In the
following we shall often resort to �simplex� integration over a point,
this to make solid contact with the canonical situation in supersym-
metric physics, a context which we mainly intend to stay within. In
such circumstances we can replace dxµ = θµ and use Berezin integra-
tion. We can coin the above �generalized� supersymmetry, GEN SUSY
or suchlike , in particular for the case where we let elements of non-
pure degree in the homology ring of a space induce a functional in the
obvious way on a element in the exterior cotangent,

< Σ,Ω >=< Σp, ωp >=
∑
p

< Σp, ωp >,ωp ∈ Γ(X × Y,
p∧
T ∗X × Y )

so that we have states with parts belonging to branes of di�erent integer
dimension.
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Next we want to have the aformentioned tranfrormation properties,
remincent of generalized equivariance of some sort, in this context.
Namely; a linear transformation on the cotangent space of the brane
Y should lift to an endomorphism of , say, double the weight on space-
time X and conversely a transfromation the space-time tangent TX
lifts to something with half that weight on TY . Here is another point
where hypercomplex manifolds enter the picture( this will be quite
usual latter); The · · · , SO(3), SO(4), SO(1, 3), SO(5), SO(6), · · · , of
space-times of diverse dimension lift to · · · , SU(2), SU(2) ⊕ SU(2)
, SL(2,C), USp(4), SU(4), · · · acting on the relevant unit spheres bound-
ing a unit ball in such a manifold and corresponding spinorial modules,
which are themselves assumed to be tangents of the relevant Y -branes.
Thus if ΛX : TpX 7→ TpX is a linear endomorphism on X space-time
we set

[ΛX ]
1
2 : TpY 7→ TpY

and oppositely. We may use a similar nomenclature and call these hy-
permanifolds, with the hope that we may be a little bit more speci�c
in the indivdual cases. For some matters in the analysis, geometry and
toplogy of such entities, see Part I; Hypermathematics. As concern-
ing X(x, y)|x=∗ it should be understood that while Xa

0 (the subscript
denotes the exterior order in

∧
T ∗X,

∧
T ∗Y, 0 = (0, 0), beginning with

order in dxµ and then degree in dyα ) this can be understood as a
embedding coordinate in the �integrated� picture� provided we use
the exponential map centered at the point x. We still percieve x as
the usual space-time point, having nothing to do with Xa

0 , which is
a vector �eld over x = ∗. Thus x is part of a choice of background
zero points for the sigma model map, one for each space-time degree of
freedom, the remaining choice of these zero points being the constant
terms in X0, while the rest of X0 is a choice of perturbation, and they
have nothing to do with each other.

9.8.2. Problem 8, Part B: Symmetries of the Actions. Let us de�ne
the action more closely for the 2-admissible and 1-admissible cases.
We have

LM = X∗D/ 2X
as our relevant part, with

X = [ Xa
0︸︷︷︸

=“embedding′′

+ Xa
(1,0) µ︸ ︷︷ ︸

=ea
µ=“vielbein′′

dxµ +Xa
µνdx

µ ∧ dxν + · · · ]
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The reason for the identi�cation θµ = dxµ|∗, θα = dyα|∗′ will soon
be apparent. For now we can set D to be the usual extended gauge
covariant derivative. It would be nice to show that this coincides with
the usual supercomponent derivation when restricted to a point in one
of the factors X, Y . We set

Dθ = dxµ
∂

∂xµ
+ dyµ

∂

∂yµ
+ iX⊕Y = Dθ,X ⊕Dθ,Y

where e.g. on X

Dθ = dxµ ∂
∂xµ + iX = θµ∂µ + iX ,

iX = xµ(dxµ)∗

The latter acts, as is well known, as a graded di�erentiation on
∧
T ∗X

and so we can set ρ(dxµ) = ∂
∂θµ a convenient isomorphism. From the

usual Cartan formula for Lie derivatives we have

[d, iX ]+ = LX
and thus by the exactness conditions d2 = 0, i2X = 0 we have

D2
θ = LX

in particular, setting Xµ = 1 ∀ µ, one has on usual functions, denoting
the usual covariant superderivative along a coordinate (xµ, θµ)

Dθµ = θµ∂µ +Xµiµ

the latter with no Einstein sum, the relation

D2
θ,µ = Xµ∂µ = ∂µ

If we restrict to integration over a point ∗ ∈ Y for one of the factors
we get

Dθµ = dxµ ∂
∂xµ + dyµ ∂

∂yµ + iX + iY

= dxµ︸︷︷︸
θµ

∂
∂xµ + dyµ

∂

∂yµ︸ ︷︷ ︸
:=0

+iX + iY︸︷︷︸
.=0

= θµ∂µ + ∂
∂θµ

We stress that the dxDdθD of usual Berezin integration is, from the
point of view of integration of forms, truly an overcounting, since the
form integration has both aspects included automatically. The invari-
ance which this product of integration measures enjoys is thus the
same as the invariance of the classical intergration measure of pseudo-
Riemannian geometry θ1 ∧ θ2 · · · ∧ θD =

√
sgn(G)|G(X)|dDx, θa ON-

frame vielbeins.
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Lorentz invariance:
We have

L = εXεY ∗ X∗∂/ 2X
X∗ = ∗X†

∗ Hodge star, † Hermitean conjugation/transpose.( It is really impor-
tant to remember in these contexts that since we are dealing with com-
pact manifolds the Hodge star is associated to an (anti)isomorphism
of Hilbert spaces as implemented by Poincare duality, since otherwise
it would be hard to understand how these lagrangeans directly induce
the string lagrangeans we observe in Part III. ) We see directly by
[δΛ, ∂/ ] = 0, δΛ a small enough space-time Lorentz transformation
that we have Lorentz invariance. From D/ 2 = �+R/ we get by

δ ∗ X∗D/ 2X = 0 + X∗[δΛ, R/ ]X
a conserved current.
Spin invariance:

This an additional symmetry symmetry that we can have by adding
Y indices to X. This works out in the same manner as the previous
Lorentz invariance. Also, the Lorentz invariance lifts down to a spin
invariance by the usual lift and conversely, so if we have both space-time
and brane indices both both Lorentz invariance and spin invariance
must be assured simultaniously. By another token we must always
have this invarianc if we want to be able to rewrite the space-time
vector indices in spinorial form and conversely when we can, since

Xa = Φ̄A′ΦAΓaAA′

where A,B are used for vector indices on the brane Y . The (S)YM
lagrangean has Lorentz invariance induced by spin invariance and this
can be readily checked. One identi�es the constant part of Xa

µ as ψa0,µ
in string theory, since

[Γµ±,Γ
ν
±] = ±2Gµν(X),

Γ± = θ ± θ∗

in particular for background �elds denoted by B or 0 as a subscript, the
latter a convient coincidence in string theory as compared to our for-
malism since background �elds are constants in the present formalism,
we have

[Γµ+,B,Γ
ν
+,B] = [ψµ0 , ψ

ν
0 ] = 2Gµν

B (X)

In the above ΦA
1 are the usual Dirac �elds in spinorial notation.

179



Supersymmetry:
Space-time Supersymmetry:
By an easy calculation one shows that we have the metric [ Id ]

on the space-time exterior algebra running diagonally w.r.t degrees.
Hence, for DeRham currents

Xa = Xa
0 + Xa

µθ
µ + · · ·

we have

|X|2 = ∗X∗X =< X,X >= ∗[(∗Xt)X] = Xt
0X0 + Xt

1µX
µ
1 + Xt

2µνX
µν
2 + · · ·

Thus, in the usual way of elementary quantum mechanics, we ex-
pect that the isometries of the Hilbert space�this time running non-
diagonally on the form degree� will give us a symmetry of the la-
grangean and conversely. Thus let

δX = δΛX
be such a transformation, antisymmetric over the form degree in∧
T ∗X,

δX = δΛX

=


0 εΛ0

1 εΛ0
2 · · ·

−εΛ0
1 0 εΛ1

2 · · ·
−εΛ0

2 −εΛ1
2 0 · · ·

· · · · · · · · · · · ·




X0

X1

X2

· · ·


=


ε−1Λ

0
1X1 + ε−2Λ

0
2X2 + · · ·

−ε1Λ0
1X0 + ε−1Λ

1
2X2 + · · ·

−ε2Λ0
2X0 − ε1Λ1

2X1 + · · ·
· · ·


where the subscript on εi an in�nitesimal grassmannian indicates it's
degree, with negative degree being dual degree in the space-time metric,
i.e. for example

ε−1 = ε θ∗

ε a small real. Hence, de�ning in an ad hoc manner δR/ = 0, we
have

δL = (δX)∗R/ X + (X)∗R/ δX = −X∗δΛR/ X + X∗R/ δΛX = 0

we have a second symmetry, with

dimO(2D) =
2D(2D − 1)

2
generators, the latter by 2D = dim(

∧
T ∗X). We now turn to symme-

tries on the world volume.
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Worldvolume Supersymmetry:
Further exanding we now get

Xa = Xa
0 + Xa

αθ
α + · · ·

It is easy to see the generalization to world volume of arbirary di-
mension once one sees how this would look on a string. For a string we
settle for two space-time basis covectors and two string sheet covectors.
Thus

S =
∫
X∗D/ 2X,

X = [Xa
0 + Xa

(0,1)dz + Xa
(0,1̄)dz̄ + Xa

(0,2)dz ∧ dz̄ + Xa
(1,0)µdx

µ + · · · ]

∗ = ∗V
T∗X//Σ

⊗ ∗V
T∗Σ, and thus by duplicating previous reasoning

we have yet another symmetry. We thus have integrals over X × Y ,
Y = embedded brane, X = target space, with the latter generalizing
Berezin integrals, and behaving like

θµ
′
= |∂z

′

∂z
|2θµ, θµ//T ∗Σ

for a di�eomorphism z 7→ z′ of Σ. From the ten dimensional perspective
this is

S =

∫
εXεY ∗ X∗D/ 2X

and an endomorphism δΛ on TpY , p ∈ Y , is lifted to (δΛ)2 on TpX.
A standard case is when we evaluate over only a point in, say, the brane,
and hold on to the space-time dependence is what we get retaining only
the constant term, thus considering

T ∗X×p(X × Y )

which is the usual space-time con�guration space (momenta times
coordinates) plus additional supercoordinates of some arbitrary num-
ber. Finally, by setting

S =

∫
εX+εX−εY+εY− ∗ X∗D/ 2X

we can split this theory into two parts, hence obtaining

S± =

∫
εX±εY± ∗ Φ∗D/ ±Φ

to worry about in terms of halfdensities on the factors of various helic-
ities. Linearization over the brane, i.e evaluating over an average point
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y = ∗, gives
S± =

∫
dDx±dDθ±Φ∗D/ ±Φ

Having wrestled with the 2-admissisble X∗D2X-term and it's 2-admissible
kins for quite a while we can put a little time on the Yang-Mills term.
We have

LYM = A∗D/ 2A
in Dirac-Kähler mode. Setting, paralleling the treatment of the X-�eld,

A = A0 +A(1,0)µdx
µ +A(0,1)αdy

α + · · ·
it is easy to verify supersymmetries. What, however, is not necessarily
true is that the PI easily reduces in the manner sketched above. Hence
de�ne ∫

A∗+D/ 2
+A+ =

∫
εX+εY+A∗+D/ 2

+A+

to be the SYM contribution on X+, Y+. ± is a subscript to the co-
variant derivative here, and not to the gamma matrices, and means
restriction of the derivative to the appropriate space-time. This can
also be achieved by setting

D/ 2 =

(
D/ 2

+ 0
0 D/ 2

−

)
on

A =

(
A+

A−

)
and then letting the integration on the inactive brane, space-time, etc
result in the identity opertion, i.e.∫

dDx±dDθ±L− =

∫
dDx± ∗ L−

9.8.3. Summary.
• The actions involved have gauge, Lorentz, space-time super-
symmetry and world volume supersymmetry as de�ned in the
text.
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9.9. Problem 9: Conformal and Weyl Symmetries. One easily
checks Y -world volume Weyl invariance

[∗(X∗D/ 2X)]εXεY

for the case of space-time rescalings in D(Y ) = 4 = D(X) inducing
transformations as follows;

X 7→ e−σ(y)X,
h 7→ e2σ(y)h,
D/ 2 7→ e−2σ(y)D/ 2|X

then having it implicit that we are taking Weyl transformations which
are over a space-time point but never the less are also varying over the
Y -brane world volume. Then

L′ = εXεY e
(D−4)σ(y)[∗(X∗D/ 2|XX)]

and the same holds for world volume depending rescalings on space-
time X. General Weyl invariance only holds for the interaction term ,
but this, of course, also depends on the type of X-�eld considered, which
must be such that it tranforms as above for these purposes in D(X) =
D(Y ) = 4, since the free term contains obstructing di�erentiations.
The Hilbert-Einstein lagrangean is covered by the interaction term in
the above. For the Y.M. lagrangean one has in identical manner

L′ = ε′Xε
′
Y |Ω′|2 = e(D−4)σ(y)εXεY |Ω|2

hence again the correct invariances. Incidentally, this implies upon
putting together X = X+ ⊕X−, that our lagrangean

GµνDX
µDXν = G−,µνD+X

µ
−D−X

ν
+ +G+,µνD−X

µ
+D+X

ν
−

retains Weyl invariance in D = 10 = 2 + 2 · 4 = 2 + D+ + D−. The
additive 2 is from world sheet propagation, whilst the multiplicative 2
corresponds to the two factors. We can check conformal invariance by
assuming

J†(GX+ ⊕GX−)J = (e2σ(x+)GX+ ⊕ e2σ(x−)GX−)

for

J = [
∂f

∂(x+, x−)
] =

(
∂f+
∂x+

0

0 ∂f−
∂x−

)
where J± are Jacobians of conformal tranformations on the space-

time helicity factors. We are thus, in e�ect, having a quaternionic
calculus, with the soul di�erence that we do not necessarily identify
points in the two spaces as their conjugates, in remincence of how
fermion �eld conjucates Ψ̄, which only excpetionally satisfy Ψ̄ = Ψ∗Γ0.
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Part III shows this to be even a necessary consequence, this by consis-
tency among �eld de�ntions de�ned in that part and arbitrariness of
background. We shall see same thing happen when we construct string
world sheets in Part III by world lines in the o�-shell space-times. Thus,
since we know that we have both Lorentz invariance and Weyl invari-
ance on the factors, we also have conformal invariance. One procceds
similarly for combined transformations of both the background target
X and the brane Y f : X×Y 7→ X×Y , X×Y = (X+×X−)×Y+×Y−
as above, where the string space-time corresponds to X = X

(5)
+ ×X

(5)
− .

9.9.1. Summary.
• We have both conformal and Weyl invariance on the space-
time/brane factors of dimension D(Y±) = D(X±) = 4.
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9.10. Problem 10: Superconformal Symmetry. Here comes one
of the rewards of having identi�ed a convinient way of writing the
superconformal mathematics. Since we have identi�ed the supertrans-
formations as various induced transformations of the usual calculus of
forms on the space-time and brane exterior algebra, superconformal
transformations of both branes and backgrounds must thus automati-
cally be symmetries of the lagrangean in view of the above.

9.11. Problem 11: Hawking Radiation. In the X, X∗ path integral
we have for integration measure

[DX][DX∗]

if we can show that DX1DX∗
1 = [D(Gµν)] then Hawking radiation

would follow, since we know by the Hilbert-Einstein appendix that∫
Lint =

∫
X∗

1R/ X1 =

∫
R

16πG

√
sgn(G(X))|G(X)|dDx

and thus expanding around x the background expansion point for the
sigma model map, and only retaining the corresponding term,

S =

∫
Lint =

∫
X∗

1R/ X1 =

∫
R

16πG

√
sgn(G(x))|G(x)|dDx

which is the usual �eld theoretic Hilbert-Einstein lagrangean, which we
historically know to imply Hawking radiation by �eld theoretic consid-
erations. Let us work out the functional determinant for a transforma-
tion of variables. By Xa

1 = eaµdx
µ we have, since

δGµν = (δea{µ)eν}a

that

[ δGµν

δea
σ

] = [
δ(δea

{µ
)eν}a

δea
σ

]

= [δσµeνb + δσν eµb]

which seems hopeless, as this should have equaled identity if the coor-
dinate change was sucessful. However, remembering that X∗, X might
be unrelated, and must at last be treated in unrelated manner, we get
on one of the helicities

[ δGµν̄

δeā
σ⊗eρ̄a

] = [ δe
ā
σ⊗eρ̄a

δeb̄
κ⊗eτ̄b

]

= [Id⊗ Id] = [Id]

where we have used the bar notation to distinguish the indices of the
two space-times, the convention being that bars belong to the positive

185



helicity space-time when contravariant. Hence

DX1µDX∗
1ν̄ = [DGµν̄ ]

on for example the space-time X−, where D is the in�nite dimen-
sional Feynman measure in the corresponding Feynman integral. And
so, on a constrained surface

X̄µ̄ = Xµ

in the total product �eld con�guration space we have

DX1µDX∗
1ν̄

and so Hawking radiation must follow�provided that the correct
kinematic term exists�since the partition function resticted to X1 �elds
is

Z± =
∫

[DX±][DX∗
∓]e−S[X±,X∗∓]

=
∫

[D(G∓,µν)]e
−

R
LH.−E.+LKin.

We now need to realize this by adding the correct kinematic la-
grangean. Foe example, we know that we are supposed to have a
kinematic term

X∗�X
and arti�cial mass terms X∗m2X, corresponding to background curva-
tures on one-particle space-times, which in the low energy limit should
be approximated by e.g. a massive scalar lagrangean, hence

LLowenergy = LH.−E. + Lmassive scalar
We can actually retain the explicit form of this lagrangean by letting

this scalar behaviour be the norm of the vielbeins, (or rather, ON
frame), thus for small perturbations of the norm, which we may denote
by Φ, de�ned by

eΦXB = (1 + Φ + · · · )XB

remembering the factor 4 that normalizes the Hilbert-Einstein term
in mathematical units and taking a mass-less case,

L = (
R

4
+ ∂µΦ∂

µΦ)
√
sgn(G(x))G(x)dDx

Since the background choice is arbitrary, we have

L = (
R

4
+ ∂µΦ∂

µΦ)
√
sgn(G(X))G(X)dDx

or, rede�ning the lagrangean of the low energy theory with a factor
of 4,
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L = (RG + 4∂µΦ∂
µΦ)
√
sgn(G(X))G(X)dDx

which will be handy for comparision with low energy string lagrangeans
in Part III. In the above we added the superscript G to the Ricci scalar
to emphasize that the low energy classical Ricci is subject to an on-shell
criterion equivalent to the Levi-Cevita condition, so that the Riemann
is functionally dependent on the metric via the usual formula for the
Levi-Cevita connection of Riemannian geometry.
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9.12. Problem 12: A Further Symmetry of The Partition Func-
tion. We would like to show symmetry under (gravitational) charge
conjugation, so we want massive �elds that interact with other massive
�elds to interact in the same manner as massive anti�elds interacting
with massive anti�elds in the �gravity� above. This is, in a naive man-
ner, most easily done. We can denote it in the same manner that we
would denote world sheet parity .̄ Then we have

ZM = (ZZ̄) = ¯̄ZZ̄ = ZM
where we used that ¯ is a ∗-operation15 in the second equality and

an involution, satisfying ¯̄A = A, in the third. Hence this naively falls.
Because of lack of space, time, and that we have other thinghs to attend
to, we cannot do further checks, but point out that in the crucial sign
calculation the same thing is visible by simply continuing the mass
charges attached to vertices by a minus sign, which then cancel out
in the diagram, since an intermediate boson must start and end on a
fermion line vertex.

9.13. Problem 13: Pair Production Problem. Since we know that
we have a Hilbert-Einstein action, and that e.g. the dilatons are can-
didates for low energy scalars, we have all the players needed for pair
production, for example in usual conventions and before a Wick rota-
tion, a low energy lagrangean of the type

L = (
R

16πG
+ ∂µΦ∂

µΦ +m2Φ2)
√
sgn(G(X))G(X)dDx

depending on the conventions of the reader, and to this one must add
suitable interaction terms, such as a phi-fourth term. Hence pair pro-
duction must fall, since such matters are usually calculated on the basis
of lagrangeans of preciseley this type.
As an aside, in the following it will be �nice� to have some systematic

way of �xing which lagrangean we have in ou conventions. We do this
by staring in the �usual� conventions, listed in the beginning of this
part under �Conventions�, and then Wick rotating, so that this would
give us a term proportional to (±i)k in front of a term proportional to
k : th order derivatives.

15That is, ∗ is such that (AB)∗ = B∗A∗.
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9.14. Problem 14: Mass, Momenta and Di�erent Kinds of
Additivity. According to us, we would naively have, in view of the
Hilbert-Einstein appendix,

p2 =
∑

p2
i

which is not quite correct. We interpret p2
i as square momenta associ-

ated, as suggested by the appendix and Problem 1, to the direct sum⊕
M

(D)
i of D-folds. Direct sums are used as we model a space-time by

it's tangent space over each space-time, and thus mean a direct sum of
vector spaces. We wish to correct this, taking into account the momen-
tum interference terms, which are bilinear in momenta. That is to say,
we wish to correct this formula to a formula that is based on additvity
of momentum. One sets for a total momentum operator, in canonical
fashion for charge operators,

P = P1 ⊗ 1⊗ 1⊗ · · ·+ 1⊗ P2 ⊗ · · · =
∑

Pi

where we used abbreviated notation in the last equality. Correspond-
ingly one has

|X(x1)X(x2)X(x3) · · ·X(xN) >= X(x1) ∧ X(x2) ∧ X(x3) ∧ · · ·X(xN)

which is the usual formula for forming multiparticle states for �elds
of the above type. Associating these operations on the �elds and be-
longing operators with the mass addition thus correesponds to adding
the masses of the momenta of �ripples�16 (solitons) on the same stan-
dard copy of a space-time that we issue as a background to the di�erent
space-times in multiparticle space-time. On the other hand

p2 =
∑

p2
i

corresponds to adding totally unrelated and independent space-times.
Later we shall see how this last formula applies anyway in some cases
associated to cluster decompostion of branes by cutting D-brane dia-
grams, as an approximate total formula, modulo a constant zero point
momentum, for the codimensional momentum of a collection of branes
cobordant to the same manifold or diagram. For example usual energy
will be an example of this, as momentum transversal to a collection of
3-folds bounding a four-dimensional diagram. This is compatible with
the other formula in the low energy limit, just like kinetic energy is
additive in an external Galilean observers frame when viewing a mul-
tiparticle system, despite that this is by addition of pure quadrics in

16We do not want to have too �big� bumps travelling on the background, because
then perturbation theory will not work.
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momenta� modulo the aformentioned zero-point. See the last section
of the N -admissibility and Feynman diagram section for this develop-
ment.

9.14.1. Summary.
• There are several ways to add mass, but this is usually done by
adding the momentum �rst and then squaring the momentum,
and this applies even to geometrical multi-particle masses by
consistency.
• Cluster decompostion of branes yields another mass additvity
formula in the low energy limit, having the property that it
adds pure quadrics of momenta, something that is compatible
with the former in the low energy limit.
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9.15. Problem 15: Properties of Entropy. It would be good to
show that our formulas for entropy satisfy what we would expect in
terms of properties of entropy. For example we want them to show
positive semide�nite entropy and that compostions of closed systems
leads to an increase of entropy. These properties of entropy follow
readily from the formulas for entropy and additivities of mass. From
general relativity we know that the area of the horizon of combined
holes is always at least as large as the sum of areas of holes. If one uses
the standard formula for additvity of masses of holes, this means that
they actually equal. We shall see that we get even increased mass for
our holes by our formula for the mass of composite objects, which is the
one of elementary particle physics rather than the usual pythagorean
formula. Explictely, for two resting holes of mass M1 and M2, we get
by our formulas above

STOT = kBA
4

= kBπ(2GM)2 = (4πG)︸ ︷︷ ︸
:=g2G

M2 = g2
G(M2

1 +M2
1 + 2M1M2)

= A1+A2+2
√
A1A2

4

where we percieve the holes more or less as usual particles. In con-
trast, for holes on independent space-times, which originate from cut-
ting a �ve-dimensional diagram without identifying outgoing space-
times and dropping a constant zero point codimensional momentum,
this is

STOT = 4πG(M2
1 +M2

2 ) = A1+A2

4

which is the usual formula which falls from pythagorean additivity
of mass. Hence we have established increase of entropy when holes
join. By positive semide�niteness of M2 also positive semide�nteness
of the entropy falls. Of course holes might bifurcate too�although this
is improbable macroscopically�and this corresponds, for example, to
giving away a quantum. Since we have for the free energy

F = U − TS
this means an increase of energy, something that makes such an excita-
tion of free energy unprobable as compared to a dexcitation as viewed
by a observer which is not part of the background, since such events
have probability given by the usual Boltzmann law as

e−Fβ = e−UβeS, T−1 = β

which clearly shows that an increase of entropy is what is probable.
The quotient of the probability of detecting a new state as compared

191



to an old one is, thus,
PNew
POld

= e(SNew−SOld) = e∆S

which clearly is greater than zero only when ∆S ≥ 0. Thus it is not
so that entropy never decreases, especially not when looking at only
a part of a system in a multicomponent system, for then lightbulbs
would never shine (Looking at entropy only is the same thing as only
looking at the component of the system which is called background.).
Rather it is really just a matter of probability and probable �ows and
not quite prohibition.

9.15.1. Summary.
• We have the usual properties of entropy in our supposed gravity.
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9.16. Problem 16: Properties of Vacua for Relevant D-branes.
This is a brief list of some properties relevant to our D-branes, especially
near the vacua we usually use, such as Einstein con�gurations.

• As mentioned before, a transformation Λ on TpX ; Λ : TpX 7→
TpX lifts to Λ

1
2 : TqY 7→ TqY on the Y-brane. This makes use of

a section s ∈ Γ(X±,Z2) which de�nes the square root, called a
spin structure. When we go to relevant vacua, the Levi-Cevita
criterion becomes a new criterion holding on these vacua. Thus
classically, when restricted to be on these vacua, we have in
e�ect one less fundamental �eld by taking away the connection,
and can regard the gravitational connection as dependent of the
metric instead of being a free variable.
• Hyperkähler property; When a hypercomplex manifold has a
Levi-Cevita connection in the conformal class of the metric it
is called Hyperkähler. Intutively, this has the interpretation
of gravtational connection being reminicent to a pure gauge,
since this means for example for complex manifolds that the
metric is closed at a trivial connection when projected onto the
antisymmetric ground state tensors, i.e reminicent to a vacuum
equivalent state. This coincides well with a well known property
of (Weyl) positive selfdual space-times, which are Hyperkähler.
The criterion for existance of a so called canonical twistor struc-
ture is Weyl selfduality of a space-time.
• It is well known that the many features of the toplogy of 3-folds
(space) are generated by cobordisms to 4 (space-time) and con-
versely. Much accordingly, such folitations and subdivisions of
space-time in into space and time go canonically via the hyper-
complex nature of situation (See Part IV). Since the time like
direction becomes what we call paths, as in path integrals, of
space-time this means that a lot of the topology of 3/4-folds
is governed by stitching along paths. Conversely, we can re-
gard a Feynman diagram as giving a situation of 4-dimensional
topology.
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9.17. Problem 17: N-admissibility.

9.17.1. 2-admissibility. Previously we heuristically related di�erent la-
grangeans and actions�when a theory seemed to be generating some
kind of �ow�to various branes of di�erent dimensions. We made the
dimension of these �lines of �ow� a pre�x to this admissibility and so
called a lagrangean/action belonging to an N-brane or D(N-1)-brane
N-admissible. In the following we shall try to discuss some of the as-
pects of the wide variety of facets of this concept, but shall never the
less delimit us not to be dealing with the explicit sewing and exhi-
bition of such D-brane diagrams. Straight away we must recognize a
certain ill-de�nedness, or rather multiple de�nedness, in this concept;
A lagrangean may be p-admissible for several p, e.g for both D± = 4
and D± = 1 = dim(γ± = ∗Σ±), ∗ a space-time Hodge star, an ex-
ample related to the duality of the path formulation and space-time
formulations of quantum �eld theory. We have our main hypothesis;

• Not every lagrangean generates a �ow, and not every lagrangean
that generates a �ow is associated to all admissibility types.
Indeed, from some lagrangeans on can read o� a certain de�nite
admissibility type, which is subject to the above dualities.

Of course, we shall in general be unable to to put together anything
resembeling a deep investigation of the correctness of this hypothesis.
Never the less, we concentrate on our favourite example�gravity�and
illustrate it, and give part of the generalization as we latter on attack
general admissibility.
Let us review the basic features of the 2-admissible case. We had, in

the above, the perspective that this could be viewed as the splitting of
a partition function

Z2−adm = Z1−admZ1−adm,
Z = s det [D2], Z1−adm = s det [D]

where we associate di�erent positions to the parts. Naively, this
casn be viewed aw a consequence of the above determinant split. We
associate space-time �elds with the former and spinorial �elds with
the latter 1-admissibilie scenario, which make up th string space-time
entities as as tensor products. Let us spin a little bit further on this
idea, then with the understanding that one would e.g. have include
various renormalization devices and cuto�s to make the above well
de�ned, although we do not do so in the following, since we are only
in a prenature stage of sketching our ideas. The objective is to gain
su�cent insight into the 2-admsiible case to be able to prove an unusual,
and extended, verison of Maldacenas conjecture.
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9.17.2. N-admissible case. It is clear how to generalize the above. Say
we set an operator Pω(O), Pω(ζ) a polynomial over C, ω ∈ Cn holomor-
phic coordinates in holomorphic ce�cents of this polynomial, spectrally
de�ned by ρ(O) = ζ on Spec(O) ∩ eigenvalues(O). Then we have a
factorization

Pω(O) = Π(ζ − ζi(ω))ni

up to at most an irrelvant constant, ni the multipicity at ζi. Hence
locally on the relevant part of the O spectrum

Z = detPω(O)
= det Π(ζ − ζ(ω))ni

= Π det(ζ − ζ(ω))ni = ΠiZ
ni
i

where we can associate di�erent positions with the various factors,
whilst in the above regarding the restriction to the case when they
coincide. Hence, locally, modulo singular spectrum, Spec(O) is an n-
fold covering of a certain set, n =

∑
ni. For the case of 2-admisibility

we had only n = n1 = 2, and zeo otherwise. We directly encounter
a possible nemisis, which can only be taken care of by being careful
in the individual cases, namely we can possibly confuse this with the
existance of extra degrees of freedom( before identi�cation), such as
e.g. color degrees of freedom.
So let us take a second glance on how this works out for the case

of strings related to �eld theory. We can set a space-time X+ with
vectors of the form XAA′ , ′ meaning positive helicity, and similarly a
space-time X− of the form XA′A. We have for our favourite terms

Xa
± = Xa

±︸︷︷︸
embedding X±

+ Xa
µ,±θ

µ︸ ︷︷ ︸
vielbein X±

+ · · · ,

Φ± = Φ0,±︸︷︷︸
embedding Y±

+ Φ1,α,±θ
α︸ ︷︷ ︸

vielbein Y±

+ · · ·

We set actions pointiwisely given by

∗LStrings,SUGRA = X∗D/ 2X
= X∗

+D−D+X− + X∗
−D+D−X+,

∗LSYM = Φ∗DΦ = Φ∗
+D+Φ− + Φ∗

−D−Φ+

and so obtain the determinant split as above. So our systematic key
to obtaining the admissibility type is to use the determinants in the
above way. Modelling the total string space by Stein manifolds our
problems will even get the correct cohomology type for tyhe problems
considered, which must be equivalent to the problems on the space-time
factors.
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9.18. Problem 18: Statement of a De�nitive Hypothesis. The
hypothesis we would like to set forth is, naively, given by actions

S =< Σ,L >
, Σ ∈ H(X±,C) = ⊕Hi(X,C) , of general SUSY in the sense that it
remains invariant under non-diagonal transformations in the exterior
algebra degrees. It includes XG the most general X-�eld possible, which
is a direct sum with elements in all relevant tensor modules, and ΦG, ω
the superdirac �eld and connection treated similarly. If we assume the
dimensions of the involved branes is bounded from above by the di-
mension D, it is obtained by taking D 7→ ∞. Hence we are supposed
to obtain all theories on all branes, with diagrams of total arbitrari-
ness, having components of varying D the dimension of the involved
D-branes. The idea is then to percieve the various theories as �owing to
each other, or to have some theories as more probable (or excited) than
other, e.g. those with a high degree of symmetry fall under this cate-
gory. The theories of much symmetry become weighted in an average
of theories obatined by transformations on an arbitrary set of theories
including those theories symmetric under these transformations. Never
the less, we want to specialize to be able to calculate anything at all;
We do this by looking for theories which have symmetries, since we
know these to be wighted and hence probable.
The theory which has a correct invariance is then given by leading

terms

∗LStrings,SUGRA = X∗D/ 2X, D = 10 = 2 + 2× 4
∗LH.E. = X∗

∓D±D∓X±, D± = 4
∗L±,SY M = Φ∗

±D∓Φ±, D± = 4

and in accordance with the usual technical terminology we instead
refer to the elements in this triplet triality as theories, then under-
standing that they are really part of the same theory. We have written
10 = 2 + 2 × 4 in the above to emphasize that two of the dimensions
in the ten dimensional theory are really o�-shell, and that we have
accounted for how to obtain the dimensions of the D = 10 theory.
Antisymmetry in the exterior algebra of the background �eld con�gu-
ration space corresponds to minimal spin polarization, and this too can
be generalized away, and leads to study of quantum theory on general
vacua, which is outside of our ability and time limits.
Thus, in e�ect, our hypothesis is the most general quantum me-

chanical system possible, including all theories at all dimensions as
it is, reduced to various e�ective theories as very probable con�gra-
tions which the theories �uctuate about. As a limited example we can
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take the renormalization group for deformation spaces of various the-
ories. Since dimension itself would then be but another parameter in
the space of theories we look upon we sometimes emphasize that it is
only a most probable dimension by saying e�ective dimension for D at
the most probable theories in the dimension spectrum, which arises at
D = 4 and D = 10 respectively when having the correct admissibilities.
Now we turn to the problem of gravity instead of the most general

theory possible.

9.19. Problem 19: Quantization of Theories, Computational
Checks. See Part III in the appropriate sections. For a check of one of
the determinant splits see Part IV and the mass spectrum calculation.
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9.20. Problem 20: A Sketch of a Proof of Maldacenas The-
orem. Finally we have all the parts needed for a proof, or perhaps
rather derivation, of Maldacenas theorem. We shall state( and prove)
a warm-up theorem �rst;

Theorem 9.2. Let ZM be the stringy partition function in D = 10 =
2 +D+ +D−, pertaining to

L = X∗
GD

2XG

and ZSYM to

LSYM = Φ∗
GDΦG

Let us pick as our total o�-shell string space-time X(10) = AdS4×S6 =

AdS4 × ˆ(R4 × R2), ˆ denoting compacti�cation, R2 corresponding to a
string world sheet with two helicities, and R4 to a �bration of trivial
monodromy on the AdS4. Then, at tree level,

ZM,tree = |ZSYM,tree|2

Proof. Let us recollect the parts of our previous reasoning necessary
to put this together. Firstly we must perform an exercise of partition
functions, the goal is to separate the�say�negative helicity space-time
stacked onto the postive space-time. In the above ZM corresponds to
an on-shell object, so if it contains essentially only information from
2×4 degrees of freedom, i.e. the two factorsX± living on codimensional
directions to the world sheet. We know for

Xa
string = Xā

+ ⊕ Xa
−

That the Xa
± = XAA′σaAA′ . Let us use this noncommutativity in the

proof by using the tensor product structure; We have �rstly

LM = X∗D2X = X∗
+D−D+X− + X∗

−D+D−X+

Hence

ZM,tot = det[D2] == det[D+D−] det[D−D+] = ZM,+ZM,−

where the parts live on D± = 4 space-time. This is the part which
intutively amounts to the probability interperetation. The next step is
to separate the spinorial behaviour.
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ZM,± =
∫

[dX∗
∓][dX±]e

−
R

X
(D±)

±
X∗±D∓D±X∓

= s det[D−D+]
= s det[D+]s det[D+]
= ZSYM,±ZSYM,∓
=
∫

[dΦ∗
∓][dΦ±]e−

R
LSY M,± × permutation − 7→ +

= |ZSYM |2
=
∫

[dΦ∗][dΦ]e−
R
LSY M

which is ok. In the last line the integral is over a standard space-
time of dimension 4. Thus, so far everything is acceptable, and we have
shown that, under the assumptions above, we have coinciding partia-
tion functions. The next step is beyond elementary algebra; We must
truly show that we must have the same vacuum solution spectra on the
space-times, which is a apriori non-trivial in view of the di�erent di-
mensions. We can do this using the theorem that a Stein manifold has
the homotopy type of a CW complex of half the real dimension, and set
X± corresponding to this, which can do by aid of the trivial mondromy
above. But then, since the extra dimensions are contractible, the coho-
mology of an arbitrary di�erential operator must be equivalent. Thus
we must have equivalent vacua. �

We have already checked that some invariances coincide, for example
we have checked Weyl invariance of∫

X∗(R/ + F/ |A:=0)X =

∫ √
h|d4x|Rabcdh

bchad

albeit in a di�ernt form of this same lagrangean. For example for the
pure YM term we have, again, this invariance by

LpureYM =
√
h|d4x|ΩabΩcdh

abhcd

transforming by hab 7→ e2σhab to

L′YM =
√
he−4σ(x)|d4x|ΩabΩcde

4σ(x)habhcd = LYM
We must also check the usual super Dirac term, then, again looking at
the interaction term just as in the Hilbert-Einstein case we have by

ΦA = e−
3σ(x)

2 ΦA

ω = e−σ(x)ω

that
L′SYM,int =

√
h|d4x|Φ∗ωΦ

=
√
he4σ(x)|d4x|e−4σ(x)Φ∗ωΦ

= LSYM,int
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and again we have Weyl invariance.
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We have now gone through some elementary checks of our hypothesis.
I think that, at this point, it would be good to shift point of view,
and I hope that it does not confuse the reader. Having propagated
for the idea that gravity is a �masked� SYM theory stemming from a
Pauli theory and my ideas on how things are supposed to correspond
between string theory and SYM, thus being �pro� for these ideas, it
would be nice if I could be permitted to adopt a very �con� point of
view. What we should now doubt, in my opinion, is not that the above
substitutions give parts o� the unity in the the X∗SMX S-matrix,
but rather that these things truly describe gravity. So we are not
questioning whether one can rip o� QED crossections and correct them
with group theory factors to get Yang-Mills crossections in some cases,
but we are simply very much critisizing the idea that gravity is decribed
by a (NC) (S)YM theory on a space asymptotically looking like an AdS
space. And furthermore the stated link between M-theory and SYM
is not clear, what one should do is to compare amplitudes etc between
the two theories systematically in some set of problems. We should
also compare β functions, e�ective actions and asymptotics, especially
when going towards the classical regime, so that we truly know that we
come out in equivalences between the mentioned theories. Fortunately,
because of the Maldacena conjecture four years ago, there has been a
great deal of comparisons of precisely that type. In this vein we are
doing checks in part III and IV.

9.21. Comparisons of M-Theory and SYM. Since I am not an
accomplished M-theorist, I cannot undertake a systematic and deep
comparison of SYM and M-theory. Hence I would like to refer the
reader to better sources. Instead of naming many I shall only mention
some, this not to confuse the reader with too many names. R.Corrado;
Some Aspects of The Connection Between Field Theories And Gravity,
Ph.D thesis, UT Austin. Corrado, who seems to have gone the M-
theory way-and presents a tour de force as a Ph.D. thesis-seems to see
through M-theory, and ties to large extent together the picture above,
although some features are missing, probably because it is a little bit
too an unorthodox insight( from the current string perspective). But
strong suspicion if not belief seems to be there, for he opens up with
quoting Weinberg, March 1996,
It's conceivable, although I admit not entirely likely that something
like modern string theory arises from a quantum �eld theory. And

that would be the �nal irony.

C.G Callan, C. Lovelace, C.R. Nappi, S.A. Yost,�String Loop Cor-
rections To Beta Functions�, Nucl. Phys. B288 (1987) 525 touch the
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issue of beta functions and Weinberg reviews the beta functions of
the supersymmetric standard model in the quantum theory of �elds
III. Maldacena, who the derived the above ideas in a totally di�er-
ent manner (although also heuristic) together with Russo touches both
the large N limit/AdS-CFT and non-commutativity in J.M. Malda-
cena, J.G. Russo, �Large N Limit of Non-commutative Gauge Theo-
ries�, hep-th/9908134. A recent paper by Witten and Seiberg states
that some stringy corrections can be obtained via non-commutativity
(a la Connes) in SYM, furthering support for the above hypothesis.
So according to us, strings and SYM are really just dual descriptions
of the above thing, probably valid within di�erent ranges, and that
would seem to be the string paradigm. We shall, anyway, be concerned
with comparing our theories and making checks in Part III and IV,
but it has then to be understood that those comparisions are made by
someone with very limited exposion to M-theory. On the other hand,
there may be di�erences to usual M-theory, and there is propably no
way to better check that this truly implies M-theory than by simply
unknowingly deriving the theory that is implied, and then compare the
two sets of rules and ideas, eventhough one does so with limited skill
assets.
I derived the above story straight out of �eld theory and elementary

considerations as an undergraduate, unaware of that it would lead to
strings17, but it is facinating to see how one can take a totally di�erent
way via M-theory, which is found in references concerning AdS-CFT
and noncommutative geometry(not in the sense of Connes, but in the
sense of noncommutative coordinates). It is also fascinating how easy
it is to give a proof of the Maldacena conjecture once one sees what
it truly means and how we �nally get a down to earth physical inter-
pretation of strings that we can all understand, even those of us who
are sceptic about strings. Equally facinating is how integral space-time
coordinate non-commutativity is to this �holographicity� property from
the above point of view, which lately has been in broad discussion, but
also how each involved concept tends to be overexagerated or given a
too important place by recent authors,[ from the present point of view,
that is], who seem to have ideas which are reminicent to parts of the
picture presented, which may or may not be correct.

17Hence the names hypermathematics and hypergeometry.
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10. In Retrospect

In retrospect, for this part, we would like to mention that there is
a vast number of issues that these and recent developments seem to
shed light on, as well as that there has been an enormous number of
physicists, both historically and presently, who have had keen intu-
ition about gravity that turns out to be �true� (in whatever sense our
scribblings can ever be), and is a subset of the present realm of ideas
presented so far. For example, taking totally arbitrary examples, the
notion of a discrete time as percieved by t'Hooft, is really resolved by
the issue of probability vectors( see above) as an interpretation of the
points of the target space, something that is already implicit in quan-
tum mechanics. This idea is, at least from the above perspective, also
part of the fundamental story that makes quantum theoretic space-
time gain it's so called noncommutativity. Zakhorovs idea of quantum
�eld theory creating curvature as a consequence of self-energy can be
seen in the split of mass and curvature done above, and Kleins �fth
dimension is used to deform the mass states at in�nity in AdS space
and generate transversal transformations of space-time. We also have
Polchinski's D-branes, and the interactions perceived between string
theory and gravity in recent years, as well as the notion of identifying
the Chan-Paton factors of a string with point particles, thus admitting
a natural step between �eld theory and String theory. The �Maldacena�
correspondence, the theorem sketched above, making the awkward ex-
tra dimensions harassing string theory disappear naturally has turned
string theory and �eld theory to dual descriptions of the same thing in a
certain range, thus putting string theory on a �rmer basis and realisti-
cally capable of doing physical prediction, at least if the hypothesisesed
proof of this theorem a la our thesis is correct, is another example of
such a link.
Just for the record - it might very well be that I'm wrong about

something in the above and then you, the reader, should not despair
but just correct it. However, since my ideas coincide to such a big
extent to the string world, I think that at least they are probably
partially right. But then again it may well be that the string universe
is wrong, and then also my ideas would be wrong, since they imply
string theory out of �eld theory.
I'm very glad that I did not get these ideas three years ago, for then

no one would have understood them, probably not even me in the end.
It is not easy being an undergraduate who gets a very involved idea,
even if it is right. I hope that, inasmuch as this can be done, others will
take up the purely �eld theoretic approach that I have taken, and put
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the various steps taken on more rigorous ground, as they do comprise
a more systematic, economic and above all extremely simple way to
hang string theory, coordinate noncommutativity, AdS etc on and get
a physical interpretation of that world with whatever consequences
that might imply. Above all I wish we could lift things from this shaky
beginning(?) of an end(?) to a rigorous end, but that is probably more
destined to be the work of a generation of physicists rather than a
single or few individuals�should we be correct. In some sense I begin
walking this road in a limping manner in Part III and Part IV, which,
however, also have shortcomings in many ways.
Let us brie�y sum up the logic of this thesis again, so far;

10.0.1. Brief Summary of The Logic in This Thesis So Far.

(1) Gravity is 2-admissible and described by

θ†D/ 2θ = θ†(�+R/ )θ

where θ = X1. In the above

LH.−E. = θ†R/ θ = R
√
hddx

is the Hilbert-Einstein term.
(2) Hence by

det(D/ 2) = det(D/ )det(D/ )

cure this theory. This corresponds to the probability interpre-
tation in quantum mechanics, which we have to partly dismiss,
since we forcibly want to deal with X �elds in gravity, which
are full densities rather than half.

(3) Make necessary physical interpretations in order to get fac-
tors etc right, exhibit the formulas necessary, and take care
of the checks and proofs around this. In particular prove that
this gives a noncommutative space-time with strings roaming
around in the D = 10 picture, and that the determinant split
really works.

(4) Now the link to noncommutative mathematics becomes clear, in
particular we the link to hypermathematics, which was custom
made for noncommutative space-time.

11. Checklist

The below is a checklist of what we demanded to be checked in the
introductory section. It is a direct quotation of our introduction, with
notches where we have succeded.
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�We will call a theory for gravity �acceptable� if the following overlap-
ping, and admittedly quite stringent, features are present in dimension
four after possible compacti�cation etc;

• It reproduces, at least at a macroscopic level, the symmetries
we observe, in particular mass attracts mass for particles of
positive energy and a 'metric' graviton should have spin 2.

√

• Hilbert-Einstein gravity is it's classical limit.
√

• It yields sensible and �nite answers to de�nite problems of a
reasonable nature, then disregarding problems that are associ-
ated to general perturbative theory such as convergence of the
S-matrix etc. In particular the theory in question should satisfy
calculationability 'in principle', as in the usual status of particle
physics.

√
(See Part III)

It should be understood directly that string theory roughly satis�es
all of the above except perhaps the last line of the last criterion.
We could consider the following as four fundamental and good ways

to check such a theory[ which of course satis�es the above requirements]
and at least start a debate from

• It reproduces the Schwarzild metric out of quantum theory, with
perturbations.

√

• Hawking radiation and entropy.
√

• Coulomb interaction and black hole scattering, together with
the crucial attractive feature.

√

• Good strong curvature dynamics, such as sensible pair creation
rates.

√

Thanks to work by Juan Maldacena in string theory, we at least
know that string theory produces Hawking entropy and radiation.�

Please see the appropriate sections and problems for the appropriate
solutions of these problems. We thus have what we chose to call an
acceptable candiate for gravity in our opening section. Our job in Part
III and IV is make further checks of this candiate, which is rather a
triplet of theories.
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12. Appendices

12.1. Appendix; Variational Identities and Some Proofs.

12.1.1. Variational Identities. The variational identities used in section
4.6, Einstein theory, are

δhµν = −hµσhρνδhρσ,
δ|h| = |h|hµνδhµν ,
δRicµν = ∇σδΓ

σ
µν −∇µδΓ

σ
σν

, |h| denoting determinant of the metric h. These are best derived
using elementary matrix identities, except for the last which is suitably
derived in a normal frame and then proved to be a tensorial identity.

12.1.2. Proof of Equivalence of Hilbert-Einstein theory and a �Pauli�
theory. In this subsection we prove, in independent manners, relations
concerning Hilbert-Einstein theory as promised in section 4.6, related to
classical Bochner techniques in mathematics. We prove an equivalence
between Hilbert-Einstein theory and a �Pauli� theory by

(1) Proving their lagrangeans to be equivalent.
(2) Proving that equivalent equations of motion are satis�ed.

Although 1) is su�cient to prove equivalence of theories, making 2)
logically redundant, since 1) implies that on-shell conditions are then
related by a functional coordinate change in a �eld con�guration space,
equivalence of equations of motion is proved in a manner independent
of the �rst proof.

Theorem 12.1 (Equivalence of Lagrangeans). With θ = [eaµdx
µ], R/ =

Rµν

2
[γµ,γν ]

2
we have

LH.−E. = R
√
hddx = θ†R/ θ

† = ∗t, t being duality on TX, and ∗ denoting Hodge star on ∧T ∗X.

Proof.

Lemma 12.1.

θ†R/ θ = θ†Rµνe
µeν∗θ

Proof. Straightforward manipulation gives

[γµ, γν ] = [eµ, eν ] + [eµ, eν∗] + [eµ∗, eν ] + [eµ∗, eν∗]
= [eµ, eν ] + [eµ∗, eν∗] + eµeν∗ − δµν + eµeν∗ + δµν − eνeµ∗ − eνeµ∗
= [eµ, eν ] + [eµ∗, eν∗] + 2(eµeν∗ − eνeµ∗)
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hence retaining volume forms only

θ†Rµν

2
[γµ,γν ]

2
θ

= θ†Rµν

2
1
2
[eµ, eν ] + [eµ∗, eν∗] + 2(eµeν∗ − eνeµ∗)θ

= θ†Rµν

2
(eµeν∗ − eνeµ∗)θ

= θ†Rµνe
µeν∗θ

where antisymmetry of Rµν was used in the last line. �

Lemma 12.2.
R
√
hddx = θ†Rµνe

µeν∗θ

Proof.
θ†Rµνe

µeν∗θ
= [e∗a(∗eaµdxµ)}[Ra

bcd(ea ⊗ eb)ec ∧ ed][eaeaµdxµ]
= ∗eaRa

bcde
ced∗eb

= δabRa
bcd ∗ ea ∧ ec

= Ra
bcdδ

dbδacεX
= Rc

bcdδ
bdεX

= R
√
hddx

�

Hence the above two lemmas give the desired assertion.
�

We now go on to proving equivalence of equations of motion in in-
dependent manner. By Gµν = 1√

h
δL
δhµν

we have

δLH−E. = Gµν
√
hδhµν = Gµν

√
h δhµν

δea
σ
δeaσ,

δL = δL
δea

µ
δeaµ

Should we, as above, be correct in equating the vielbein 'Pauli' la-
grangean L to a Hilbert lagrangean, then falls that the variational
coe�cents above should equal. Conversely falls upon integration of the
variation that the lagrangeans will equal relative to a �xed background.
Let us prove this as a check;

Theorem 12.2. The equations of motion generated by the two above
lagrangeans are equivalent, i.e

Gµν
√
h
δhµν
δeaσ

=
δL
δeaσ

Proof. We have δhµν

δea
σ

= ebµδ
σ
ν δab + ebνδ

σ
µδab by δhµν = δ(eaµe

b
νδab) =

eaµδeνa + eaνδeµa. Hence

Gµν
√
h
δhµν
δeaσ

= Gµν
√
h(ebµδ

σ
ν δab + ebνδ

σ
µδab) = 2δabe

b
ρG

ρσ
√
h
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For the righthand side we have, adopting the convention of raising
and lowering with the constant δab only;

δ
δea

µ
(θ†R/ θ) = I + II

with I being

I =
δ(eµ

aR
a
bµ

νeb
ν)

δea
µ

εX

=
(δeµ

aR
a
bµ

νeb
ν+eµ

aR
a
bµ

νδeb
ν)

δea
µ

εX

= (Rµν
ab e

b
ν +Rb

aν
µ
eνb )εX

= 2Rµν
aν εX = 2RicµaεX = 2δabRic

bµεX = 2δabe
b
νRic

νµεX

and II stemming from variation of the volume term;

δ
√
h

δea
µ
ddx

= 1
2

√
hhµν δhµν

δea
σ
ddx

= 1
2

√
hhµν(ebµδ

σ
ν δab + ebνδ

σ
µδab)d

dx

Hence, remembering that h := −h in the case of Minkowskian sig-
nature,

δ
δea

µ
(θ†R/ θ) = I + II = (2δabe

b
νRic

νµ
√
h− R

2

√
hhσν(ebσδ

µ
ν δab + ebνδ

µ
σδab))d

dx

= 2(δabe
b
νRic

νµ
√
h− 1

2
R
√
hhµνebµδ

σ
ν δab)d

dx

= 2
√
h(Ricµa − 1

2
Rhµa)d

dx

= 2
√
hGµ

ad
dx

equaling the lefthand side. �

Hence by integration of the variation from a �xed background we
have proved equivalence of lagrangeans a second time. Before depart-
ing we mention a couple of applications. The usual �Pauli� term equa-
tion, which is simpler than the Einstein �eld equation, corresponds to
varying a 4-form instead of a 0-form and thus having the shift of the
integration wheighting included for free in the variation of the 4-form.
For vacuum space-times, i.e Einstein space-times, this is of course not
any greater simpli�cation, since the original situation in the Einstein
formalism is already simple, but for non-vacuum space-times this is
a considerable simpli�cation in considering classical theory. Also the
above implies that we can use Yang-Mills theory to attack classical
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gravity together with the quantum theory18 obtained by direct quanti-
zation of the classical theory. Among other things this seems to imply,
by remarks on how to �nd the solutions to the spinorial Klein-Gordon
equation in the section �The Heart of This Thesis�, that there is an
explicitly �nite �eld theory to all orders describing this direct quanti-
zation of classical gravity19. To remind the reader; one cures a �Pauli�
theory, wich has an inadmissible quantum lagrangean, by using the
Dirac lagrangean, which is the correct object to exponentiate in a quan-
tum theory of this kind, and then forming superpositions of solutions.
This is also at least the most crucial, and very simple, explanation to
why previous trials at quantization of classical gravity by direct quan-
tization of the classical H.E. action by regarding the space-time metric
as a fundamental �eld went wrong at orders higher than 1-loop; people
were in �Pauli� trouble.
We mention a couple of consequences of the above. Let us de�ne the

mass-curvature of a space-time X as the expectancy value

< R/ >=

∫
X

θ†R/ θ

with θ normalized, where we might call R/ the Ricci operator, and
de�ne the mass as the square root of this. This formula has Weyl
invariance in D = D± = 4, as well as lorentz and gauge invariance
invariance in arbitrary D. In the above mathematical units are used
and a minus sign truly di�ers the square mass from the mean curvature
after a double Wick rotation, which is the thing to do canonically to get
correct statistics among manifolds. We may view a classical space-time
as being given by a pair (ω, θ) with θ an orthonormal frame (vielbein)
and ω a connection.

Theorem 12.3. Let X(ω,θ) a be a Dirac on-shell space-time with con-
nection ω and vielbein θ. Then X is Ricci-�at if and only if it is
compatible, i.e

18Which is, however, false as a true theory of quantum gravity in the sense of
a theory that deals with half-densities. There is a distinct step between classical
and quantum gravity, having nothing to do with the process of quantization but
rather with the stucture of quantum theory as a saga of half-densities, with the
latter, quantum gravity, corresponding to a space-time �square-root�. Probability
densities satisfy classically the heat equation, a Euclideanized Schrödinger equation,
yet we would not consider them as fundamental in quantum theory, instead we look
at amplitudes, which are �roots� of probability densities.

19Making this correction in the graded version should correspond to obtaining
a primitive but correct and �nite supergravity, which then would correspond to
a graded version of a direct quantization of the classical theory. See however the
footnote above concerning the quantization of classical gravity.
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∇θ = 0

Proof. We have by the Dirac on-shell condition

θ†(D/ )2θ = |D/ θ|2 = 0

hence rewriting the lefthand side

0 = θ†(D/ )2θ = θ†D∗Dθ + θ†R/ θ = |Dθ|2 + θ†R/ θ

Thus imposing Ricci �atness θ†R/ θ = 0 Dθ = 0 falls, and conversely
by the above compatibility Dθ = 0 implies Ricci �atness. �

Let us return to our elementary expose after the above comment on
classical gravity and the theory obtained by direct quantization of it.
Let us call a space-time to be of semide�nite type if it's Ricci curva-

ture is either positive semide�nite or negative semide�nite. Then, with
the understanding that everything is assumed to be smooth, we have

Corollary 12.1. For X(ω,θ) Dirac on-shell of a semide�nite type we
have that X is compatible if and only it is mass-less, i.e has vanishing
mass-curvature.

12.1.3. The physics of the classical gravity above and the associated
�direct� quantization. Some remarks should be done in order to make
things comprehensible in the above and the following, e.g the no-
constraint nature( in the sense that it does not give an additional
constraint) of the Einstein �eld equation as interpreted above. The
Einstein �eld equation of a space-time background as realized above is
an identity and much less an equation, and is implied by the statement
D/ θ = 0. Demanding the same statement of a geodesic X = d

dλ
, i.e

D/ X = 0 gives the motion of a point particle on this same background,
so it is the same statement that governs the space-time background as
well as the motion on the space-time. The converse, on the other hand,
has been realized much earlier, indeed can be found in Misner, Thorne,
Wheeler and was used among other things to derive the motion of a
point particle by the Einstein �eld equation instead following the high
curvature just around the particle, i.e the same statement was used
both to derive the dynamics of a background and the particles on it-
indeed a remarkable thing. It is almost seems remarkable that no-one
thought of turning things around and using the �eld equation of a point
particle in the sense of SYM to describe a space-time. The main, and
intially di�cult, obstruction to this is, from the classical point of view
of �eld theory, that gravity attracts equal charges while SYM deals
with a spin 1 boson which endows them with quite unlike symmetries.
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The above theorems are to some extent statements of a 1-particle
space-time in a classical gravity. For multi-particle space times mass-
curvature as described above is additive, corresponding to the direct
sum classical con�guration space

⊕
TXi, Xi di�erent manifolds, in

a manner similar to the additivity of squared frequencies in classical
physical systems with several independent degrees of freedom

m2
total =

∑
m2
i

something derived by simply applying the rules of elementary quan-
tum mechanics to the above20. Of course, usually one never thinks of
space-time in this manner but rather one imagines it to be only one
space-time, namely a background space time, but the con�guration
space perspective is an important perspective if there is any interest
in quantum matters. The world is not 4 dimensional, rather 4n di-
mensional with n the number of particles, as there are n particles free
to move in 4 directions, something well known in classical mechanics
and this re�ects in a quantum theory of gravity as well in �eld theory.
No interactions, i.e an independent particle approximation, means the
split TXtotal =

⊕
TXi, Xi di�erent manifolds, and a corresponding

diagonal split of the connection on the total con�guration space with
obvious implications for the parallel transport over the total space if
this is an irreducible split of a structure Lie algebra, or more generally
Lie subalgebras of the automorphism Lie algebra of the �ber of the
relevant vector bundles. Having small interactions corresponds to hav-
ing small o�-diagonal entries in the appropriate connection over such a
split, which is usually quite large in the sense of many summands and
products, e.g the universe, to take an example of a dynamical system
with many components, just like having a small non-diagonal Hamil-
tonian in statistical mechanics. Particles, when percieved as such, thus
become highly localized solitonic con�gurations associated with the
vielbeins, with something reminiscent to �probability �ow� being

dhµν = eaµdeνa + eaνdeµa

in such a SO(n,m) − Gl(n,m) theory. Parallel transport of the
�ber of the relevant vector bundle in, say, O(n,m) or U(n,m), corre-
sponds to preserved amplitudes along a trajectory while transforma-
tions transversal to this indicate instability. Such behaviour, by appro-
priate generalization of the behavior of negative square mass, might be

20This formula is deviating by factors proportional to the inner products of particle
momenta i 6= j, and this is accounted for slightly later in the quantum theory section by
correcting and specifying the naive formula for how to form multiparticle states
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called tachyonic. Since we are used to looking at S-matrices at in�n-
ity we often only look at isometries of the �ber in the vector bundles.
The latter formula also shows, beside the obvious physical interpreta-
tion of manifolds in the Kähler cathegory as �vacuum� con�gurations(
upon inclusion of exterior products), shortcomings of such a theory,
since we want to associate the entries of h to amplitudes, and is one
of many ways to come to a motivation for investigation of a theory
corresponding to a 'square root' of space-time, i.e spinors. These Käh-
ler con�gurations become when one is considering what is supposed to
be the �accurate� theory hyperkähler, see Part IV. Incidentally, this is
also possible to perceive in the classical theory and corresponds to the
vacuum in the scale of stable, i.e amplitude preserving, holonomies in
the scale below

R=0 R<0R>0
2

S
d

Hyperbolic manifoldsElliptic manifolds .

R=- M

Imaginary mass Positive mass

zero mass
Unstable Stable

Figure 14. A scale containing the manifolds at dimen-
sion D. The mass scale is after a double Wick rotation
made to insure correct statistics among the D-folds. Any
of these could be hyperkahler, which then corresponds to
them having maximal volume because the mass charge
density is equally distributed on the D3- brane. ER-
RATA: The diagrams that are elliptic should be stable,
and the ones with non-trivial topology and hyperbolic
curvature are unstable if the the norm of the Ricci scalar
divided by 4 is more than the squared mass of the back-
ground.

It might be worth to make some remarks on the dynamics of the scale
above.21 The following theorem, related to reasoning of the previous

21Errata; The scale above should have stable and unstable interchanged.
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section, shows some of the behaviour of this scale for the case of nega-
tive square mass. Those correspond to unstable tachyonic space-times
which are similar to bound con�gurations decaying to lower states;

Theorem 12.4 (Bochner). Let X(ω,θ) be compact connected with posi-
tive Ricci curvature, then

π1(X) ∼= {0}

It's content is that there are really no interesting geodesics on such
states. The states of positive square mass, which thus roughly corre-
spond to �free states� are actually in enormous abundance as compared
to tachyonic( elliptic) states, and by this token, just to take an example,
�xing demands on positive Ricci curvature with positive lower bounds
together with the statement of vanishing fundamental group will �x
things uniquely in some cases. Here is an example;

Theorem 12.5 (Sphere theorem). Let M be compact with vanishing
fundamental group satisfying

0 <
C

4
< R < C

C some real constant. Then M is homeomorphic to the sphere Sn.

The above matters of instability also show in the behaviour of geodesics
in tachyonic space-times; an extremal geodesic need not be minimal in
those cases.
Smooth vacuum (Einstein) positive selfdual space-times are also scarce

in dimension 4, R4, K3 and various quotients obtained by the action
of some discrete group being an exhaustive list. It is well known that
a Kähler property corresponds to being of extremal volume, see e.g
Novikov et al.[1] for complex manifolds. Something similar holds for
the hyperkähler case; The hyperkähler property implies them to cor-
respond to manifolds of extremal volume, satisfying something similar
to a 4-dimensional version of Fermat's principle, and are actually for
the case of Minkowskian signature maximal in volume, much like the
physics of the surface of an in�ated balloon with equal rubber thickness
and no extra pressure applied at any point.
Because of the abundance of hyperbolic states (the �usual� states)

they form an interesting category to study, indeed there are entire
books devoted to such study, e.g S.Kobayahi's Hyperbolic Complex
Spaces for a complex example.
It is a theorem, Yamabe's theorem (See Milnor[1]) to be precise, that

any smooth D-fold in dimension D ≥ 3 is conformally equivalent to a
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manifold of constant scalar curvature22, something that is important
to the classi�cation above, indeed this implies that the mass-curvature
de�ned above will coincide with this �canonical� constant curvature
by functoriality of the construction. This is also important in some
applications of quantum theory partially outside of the scope of this
thesis that require the choice of a good gauge slice in some applica-
tions of gravity. It is also a theorem, Lohkamp's theorem, that any
homeomorphism type in D ≥ 3 admits a hyperbolic metric in the Ricci
scalar.

22In dimension 2 this is contained in the great uniformization theorem of Rie-
mann surface theory, in dimension 1 trivial.
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The following references are mostly books, and subdivided into math-
ematics and physics references in book format. None of them are meant
to be complete, but rather are supposed to be a list containing 1-2
books in the various areas relevant to this thesis from my book shelves.
Subsequent to this follows a selection of research papers of relevance,
mostly in physics. I hope that it might serve some help to other un-
dergraduates.
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Part III: Quantum Gravity and String Field Theory:
Studies at Depth
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Few� but ripe.
Johann Friedrich Gauss

219



13. Introduction

In this part we undertake the deeper, and less heuristic, study of
gravity by using the intuition we developed in part II, and the concepts
that emerged such as n-admissibility, generalized supersymmetry, one
particle space-times/ multiparticle space times( which we shall now
identify with D3-branes and stacks of D3-branes respectively.) e.t.c..
Although we did some extensive checks in Problem 1-20 of part II these
were many times but heuristic and very intuitive, so we shall �nd it nice
to be able to rely on more traditional and straightforward methods.
As some checks of our quantizations we would like to do some calcu-

lations and see that they come out reasonable, and hopefully equivalent
in both theories as well as in string theory. Now we are truly lucky, since
a) various conjectures such as the emergence of string theory/AdS-CFT
correspondences etc and b) we have consiously strived towards a tie up
of string theory, NC geometry and twistor geometry, other authors have
often made the checks in pertaining areas, e.g for the AdS-CFT con-
jecture, whose assumed underlying mechanism we display more fully in
this part, in the beginning of the string theory era (mid 80's), or , as
lately has been, between various noncommutativities and string theory.
So all we will have to do in such cases is to wrap things up, ty them
to what we have done, and thus put the individual parts of physics
�guring in this thesis together. We shall take a number of more or
less arbitrary choices; Checks of β-functions, mass spectrum, moduli of
vacua, string theoretic calculations to 1/2-loop and general multiloop,
string/weak coupling limits, T ,S,U duals, exact and non-pertubative
results. Inasfar as these matters we shall be brief and instead simply
state results and interconnection, thereby referring to the various au-
thors in the literature, and the references therein, which are responsible
for those computations, and mostly only mention the relevant aspects
that provide the ties.
On our own we shall be concerned with the explicit and less heuristic

quantization of both theories in the physical dimension and relating
them to string theory in D = 10, but brake o� at 1-loop, as this
will be su�cent to see that we are more or less right, and that our
quantizations and scheme truly seem to generate string theory, thus
providing the foundational basis of what we have chosen to call string
�eld theory, i.e the combination of �eld theory and string theory as
an interrelating whole rather in the usual sense of a �eld theoretic
alternative to the �rst quantized world sheet formalism. It is in this
course that we also prove Maldacena's theorem.
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The systematics are as follows; We start o� with more or less re-
stating what we have done in PartII in a clearer and more condensed
matter, and how string theory is supposed to arise. We then move
on to the aformentioned checks, mostly checked and well proved in
string theory, done by other authors in string theory where we on our
own only have to check that we come out equivalent. Subsequently we
perform the quantizations of the theories, inasfar as amplitudes con-
cerning concentrating on graviton-graviton scattering in both theories,
and check both in full generality and in the speci�c example of this
scattering that the amplitudes of both theories coincide, and how they
correspond to elements in the string pertubation theories. In particular
we exhibit the �eld rede�nitions to get the relations between the three
theories in D = 4 and D = 10 respectively. Finally we mention some
other things that other authors have done and do a couple of physical
predictions.

13.1. Isomorphism and De�ning Formulas.

13.2. A Brief Summary of Formulas. We have in D± = 4 the
physical dimension on one of the helicities

L = ∗( (∗Xµ
+)D−D+Xν

−(Gµν +Bµν) )

∗ denoting Hodge star, wich will act as (anti)isomorphism of Hilbert
spaces when we identify the appropriate exterior module of appropriate
degree with it's dual. X has natural Chan-Paton factors given by

Xµ,α = Φ̄ΓµT
αΦ

which can be expressed more naturally, e.g for Ma
AαA′β = σaAA′Tαβ as

X− = (Φ̄−σ
aTαβΦ+) σa ⊗ Tαβ

or simply
Xaαβ
− = Φ̄−σ

aTαβΦ+

One obtaines the colored averaged space-time super�eld by perform-
ing a trace over colors23. In the above we used the ON frame, and this
will be central to the �eld rede�nitions needed, since we will express
everything �rstly in that frame for our two quantization, whilst the
stringy standard writes it in the coordinate frame, just as in the la-
grangean above. Rewriting the lagrangean in that fram, which we may

23Implictly in this lies reducing the number of �identi�ed� space-times. Co-
incident space-times is a more common word, describing the same thing, in the
literature.
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by invariance if we have gauge covariant superderivatives, we have the
other form of our lagrangean as

L = ∗( (∗Xa
+)D−D+Xb

−ηab )

for diagonlizable G + B. In the remaining we shall generally set
the B-�eld to be vanishing, as this will not a�ect the present analysis
to any greater extent for small such �elds. We have components X0,
X1, of exteriour degree 0 and 1 respectively being the embedding and
vielbein in that order

f = “embedding′′ = expp(X0)
Xa

1 = eaµθ
µ = eaµdx

µ

Where it is understood that in the above what truly is meant is a
possibly singular embedding f , i.e. a higher dimensional sigma model
map. expp denotes the exponential map w.r.t to the background over
a point p, and this is in congruence with what we previously stated at
the end of the conventions section of Part II.
For real Euclidean space-times the color averaged space-time X su-

per�elds take hypercomplex values by the above.

13.2.1. Discussion of Part II. We suspect that our hypothesis, intro-
duced in part II, generates string theory as a 2/10 admissible theory,
then including the two stacked space-times corresponding to various
helicities, as well as the two o�-shell dimensions corresponding to one
o�-shell dimension emanating from mass �uctuations added to a D3-
brane of either helicity, i.e the world sheet. In order to show that we
have an isomorphism of theories it su�ces to show that all correlators
are equivalent in our two hypothesis, as well as compared to string
theory. We shall mainly be doing this in the same manner that one
would usually prove two algebras to be be isomorphic�i.e by proving
that their generators are isomorphic. In this direction we have, if we
use an

Axiom 13.1. We set for the remaining of this thesis, well known facts
about quantum theory path integrals to be an axiom, in particular the
fact that the worldline formulation of quantum �eld theory path inte-
grals works will be condidered to be such an axiom. We also assume the
axioms of quantum theory, in particular we assume additivity of similar
charges in a quantum mechanical system of several components to a to-
tal charge of pertaining kind. The only exception to these axioms will be
the Born interpretation of wayfunctions, as we will want to work with
more general models ( e.g the classical �eld theory of hydrodynamical
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�ows turned quantum by reusing the mathematics of quantum theory )
where there is not necessarily such an interpretation.

the theorem

Theorem 13.1. A �eld theoretic interpretation and treatment of our
formulae above implies

(1) World sheet conformal algebra on a string.
(2) Correlator functions and amplitudes corresponding to a string

progressing forward in stringy space-time D=10, up to the pro-
cess of summation over spin structures and world sheet moduli.

In the above the string space-time is mass o�-shell and Matrix valued.

Torbrand Dhrif 2000. We start by the �rst statement and then proceed
to the second. The proof proceeds by using the world-line formulation
of path integrals and SYM in particular.
We have by our formulae for the correlator of an X-�eld

< Xa >=< ΦA(x−)ΦA′(x+) > σaA′A = x− • − −−−−−−− •x+

where we remembered the Feynman diagram interpretation of the
latter, and x− is on the negative helicity space-time, whilst x+ in the
positive helicity space-time, and we agreed that except for �eld val-
ues these space-times are identical, so that we could talk of only one
space-time instead of copies of it, which justi�es the Feynman diagram
interpretation used. But then, since in the world-line formalism, we
know that a worldine can be treated as a 1-dimensional �eld theory
imbedded into space-time( and will give the correct SYM answers), it
must fall that this propagator can be precieved also as a path in space-
time with a �eld theory on it and not only a graphical device to aid
memory. But then we have a string at a �xed instant, in the sense of
having lagrangean content pulled back to a path in space-time and a
1-dimensional �eld theory on this interval. We must now show that
this indeed implies that we have conformal algebra on this supposed
string when it evolves. Let us identify the positive helicity space-time
with the negative helicity space-time, i.e do what people just slightly
incorrectly call letting the D3-branes being coincident, so that we set
x+ 7→ x−, then the above propagator closes. Since we want the X �eld
to be uniquely valued this means that we can describe the string by a
an interval [0, 2π], with periodic boundary conditions. Hence we have
NS conditions for the string corresponding to the X �eld when we make
the necessary identi�cation to regard X on a single D = 4 space-time.
But then we can model this as an S1 in the complex plane, or half that
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circle when we do not identify endpoints. As for Ramond conditions,
we note that we can also demand that the �eld be uniquely de�ned
on the direct product of space-times to be uniquely valid, this before
identi�cation, something that must correspond to that it su�ces that
the spinors, which are taking values in Y± = T± ∼= C2 ∼= H ∼= R4, are
uniquely valued, X± = Y±/Z2, and since they must have degree half
that of X �elds they must lie , as a 1-fold covering of S1 in Y±, where
the NS �elds corresponded to a two-fold covering of the same circle.
Hence they can only image half the circle in space-time, and must thus
be antiperiodic when we choose the value midway as the origin. Now we
must also be certain that we are not only dealing with the correct �eld
theories and supposed string boundary values but also on the correct
domains in space time, hence we must prove this. We do so by notic-
ing the higher dimensional sigma model structure of our theories, which
permits us to do reasoning about a domain by reasoning concerning a
range, since the domain and range of �elds are apriori equivalent when
there are no interactions as we are mapping background conguences to
interacting congruences. In `usual' �eld theory we do not quite deal
with �eld theory on R4, so no contradiction truly arises from R4/Z2

here. That we deal with R4 is certainely in some sense so, but only by
abbreviation and convention, for the Green's functions are truly cor-
responding to Dirichlet problems on future space-time R+×R3 taking
boundary value data on the slice at zero time {0}×R3, and this is seen
to coincide with the model that falls by the identi�cations of directions
through the origin above, with some speci�c direction chosen as future.
This is very important, and corresponds to the iε in momentum space
propagators. In the above, if we choose to just work with rays through
the origin without any choice of future direction this is achieved by
blowing up the singularity at the origin by simply taking away a small
D4 around the origin, which will then give the same toplogy. This is
realised a follows; The identi�ed rays at an equator, of S3 × U , U an
open interval, will be the rays at spatial in�nity at the in�nte future
and the given intant. We note the the condition that �elds at spatial
in�nity at all instances must vanish, hence be equivalent. The corre-
sponding rays are precisely the identi�ed rays on the equator. But then
it must also fall that have the same topology for the partial di�erntial
equations.
We now turn to the issue of generating timelike translations now that

the important issue of correct boundary value prescriptions on correct
domains has been checked.
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Let the Hamilonian generate temporal translations on the X-�eld.
We can do this by regarding a usual propagator

< ΦA(x−)ΦA′(x+) >= x′− • − −−−−−−− •x−

in, say, the negative helicity space time, as above, corresponding to
the lagrangean LSYM, ± = Φ̄∓D±Φ±. But we know that this also has
the interpretation of path in space-time by the worldline formulation
again, say in the interval [0, T ]. So if we let the end points of our
original string sweep forward in their respective space-times we see that
we have a world sheet extending in the volume given by the image of
[0, 2π]×[0, T ] in the direct sum of space-times, where we now take direct
sums of �elds, one of each helicity. But then also follows, rewriting
the intrinsic charge operators living on the �eld theories on respective
intervals, by using the standard relation

Qtotal = Q1 ⊗ 1 + 1⊗Q2

Qi the charge operator pertaining to both �eld theories on the various
intervals, on the tensor product of Hilbert spaces on the two intervals.
Hence also, noting that −(Di)

2 would be the charge operator, this by
the determinant argument in the n-admissibility section ( Problem 16,
Part II, see the below lemma. ), which tells us directly that the space-
time theory has to be proportional to a second order superderivative
and the fact that we only have one coordinate, which thus determines
the second order superderivative uniquely, that we have

Q = −D2
1 −D2

2

Hence Xa �elds living on the product [0, 2π] × [0, T ] have vacuum de-
�ned by, e.g, 0 = QX = −D+D−X− and so are superharmonic. Since
we know that we have superharmonic functions on an annulus or a
halfannulus( if we do not identify the end points of the supposed string
along the propagator from positive helicity space-time to negative he-
licity space-time we get halfannulus) in the plane, superconformal al-
gebra also must fall, since the lagrangean on the worldsheet is implied,
modulo total variational derivatives, by the equation of motion, and so
must give us the string lagrangean. We can write down the result of
such an integration,

(D±Xa
∓)(D∓Xa,±)

listed above. We note that in the above the lefthanded �elds need
not be the conjugates of the righthanded, since they are constructed
of spinors of di�erent kind which are functionally independent, as the

225



reader may explictly check. Assume that we started with o�shell space-
times instead, so that we had e.g D± = 5 ( as for the standard Klein-
Gordon case), then we obtain by analogous reasoning strings inD = 10.
Now repeating the same argument gives, the massless superlagrangean
listed a section ago, hence the usual local superconformal algebra on
the world sheet must fall for that case too.
To ty together the proof we must now show that we truly must have

charge operators Qi = −D2
1 on the intervals. It can be most easily

seen how this becomes so if we work backwards, and this is ok since
we will be working with equivalences. Extracting the superconnection
from the super Yang-Mills lagrangean we have

Φ∗
∓DΦ± = DX±

on the timelike interval. Now we can either realize directly that this
must be half the lagrangean, or better mathematically simply operate
with D1 a second time. The same goes for the spatial interval, which by
the worldine formlism combined with the Feynman path interpretation
of a propagator had to be interpreted in the same way. Since this
would require an inductive step at this point if we continued that line
of reasoning we cannot continue rigorously in this particular way, so for
this reason we refer to the below lemma. But, under the assuption that
the lemma is accurate, both dimensions have a set of charge operators
which are as claimed, and so we are done, if we are allowed to use basic
facts about path integrals, which is not selfevident.
As for the second part, the reasoning proceeds as follows; we note

that since we have by Mαβ = Tαβ, Ma
AA′ = σaAA′ the appropiate sym-

metrizers of �elds the accurate Chan-Paton factors, with their usual
rules follow by by �eld theory arguments. Since the vertex operators
we would now write down on the worldsheet theory by the above are
the same as the ones we know from the string theory NS vertices we
must conclude, after appropriate procedure of quantization and that,
up to summation over moduli and spin structure, the correlators and
amplitudes must be the same.
To conclude the theorem, we note that Xa was supposed to be a

supertangent vector space, hence e.g. Xµ
0 takes values in U(Nc)⊗ · · ·

after exponentiation in the integrated picture.
Under the axiom listed prior to the statement of this theorem and

the lemma below the above now falls.

�
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The theorem above could be interpreted as stating that the proba-
bility interpretation, which forces us to use half-densities in terms of
spinors, implies matrix strings. We will notice that this has a converse
e�ect when we calculate string theory amplitudes�it will mean that
we do not have square entites at the end of a calculation to get the
correct result. We will go through this repeatedly when we calculate
amplitudes later.
The above used lemma is

Lemma 13.1. Assume the above lagrangeans to be of theories on Hilbert
space H± to be such that they induce the partition function

det(iD±)

Then it also falls, up to possible illde�nedness of in�nite dimensional
determinants, that the partition function it induces on the product H+⊗
H− ⊂

⊕∞
0=p=r+s

⊗r
1H+

⊗s
1H− is of the form

det(−D+D−)

Proof. Up to god forsaken ill de�nedness, cured by an arbitray and
good enough renormalization choice of the reader,

det(iD+)det(iD−) = det(−D+D−)

�

A small deviation from the last homomorphism property, which is of
course at least not impossible, could be called homomorphism anom-
aly or suchlike. It is also expected to di�er for di�erent renormaliza-
tion schemes, perhaps related by a �eld rede�nition in some of them.
The naive hope, which is perhaps too much of a hope, is that it van-
ishes. We will not be dealing with homomorphism anomalies at any
greater extent in this thesis, that is breakings of relations of the form
φ(x)φ(y) = φ(xy), φ a homomorphism of an appropriate algebraic
structure, in this thesis, but we will show it to be explictly vanishing in a
special case where the partition functions both each separate factor and
the superstring function can be calculated and checked to be equivalent
by methods of complex analysis. We shall also check this in the string
pertubtion theory series, where it will vanish by an extension of the Chi-
ral Splitting Theorem. One must di�er between homomorphism anom-
alies of the �rst kind, pertaining to det(D2)�=�det(D+D−)det(D−D+),
leading from string theory to Hilbert-Einstein gravity, and those of the
second kind, stemming from det(D+D−)�=�det(D+)det(D−), belong-
ing to the reduction from full densites in Hilbert-Einstein gravity on
each space-time to half densities in SYM .
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Hence by the above falls that, after summation over moduli and
spinstructues( the �eld theoretic �how� or rather �why� of this matter
will more clear when we prove another similar thorem later) that if
we include summation over spin structures and moduli that we have
D = 10 string theory, where we shall at least discuss that issue. We
shall, for the remainder of this thesis, refer to the theory on each D3-
brane as quantum Hilbert-Einstein gravity, abberiviated to Hilbert-
Einstein gravity, although this is certainly not a good name. For now
we assume implicitly that string theory here is an average over moduli
and spin structures at it's pertubation theory series, so that we can
make comparisions to usual string theory.
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14. Effective Actions

14.1. Introduction. As we already know that we start o� with the
accurate lagrangean in D = 2 world sheet formulation in noncommu-
tative space-time

LM = XµD+D−Xν(Gµν +Bµν) +R

where we have included the Hilbert-Einstein term but not anything
more of the non-free terms, pertaining to the Weitzenbrock-Bochner
formula in part II, which when pulled back to the world sheet is topo-
logical and recognized as the Euler charecteristic, modulo a constant
which has to do with the gravitational interaction, which we neglect in
this discussion. We know, since the space-time loops must close on the
space-times of various helicities when we want to talk about a single
�eld X �eld, that we must in e�ect be dealing with type II strings.
We want a chirally symmetric theory on obvious grounds since we have
formulated the theory above in a symmetric manner.
Although it may�or may not� be that stringy calculations so far

are wrong in D = 10 we shall not concern ourselves with remedying
them in this thesis( the pathology being the dimension), as we must
delimit ourselves somehow. We shall thus merely quote the results in
D = 10, where one is supposed to be having one o�-shell space-time
too much, as it is there that it seems that most easily available mate-
rial is, and we can of course not trust the mechanisms of dimensional
reduction that string theorists have used. Accurate procedures shall
be discussed in this thesis. Note that the o�-shell space-times induce
after compacti�cation of the factors the topology X(5)

+ ×X
(5)
− = S5×S5,

which, after continuation to physical space-time, is AdS5×S5. It is here
that the most famous Maldacena conjecture lives, and we shall opt for
a proof, as well as the accurate mechanism of dimensional reduction,
which some readers probably already see.
We quote some results in D = 10 of type IIB which at least seems

to be the theory which interests us, in the inaccurate R10 topology.
Throughout this part we lean almost exclusively for string theory cal-
culations and results on J. Polchinski, vol II, in particular the opening
chapters and the chapter on physics in dimension 4, and Eric D'Hoker's
string theory lecture notes from the year 1996-1997 at the Institute for
Advanced Study throughout the following, in particular chapter 4, 5
and 9, where material on calculating amplitudes is located, something
that we will be in need of later.
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14.2. String Theory E�ective Actions in D = 10. Polchinski II
gives

SIIB = SNS + SR + SCS,
SNS = 1

2κ2
10

∫
d10x
√
−Ge−2Φ(R + 4∂µΦ∂

µΦ− 1
2
|H3|2),

SR = − 1
4k2

10

∫
d10x
√
−G(|F1|2 + |F̃3|2 + |F̃5|2)

SCS == − 1
4k2

10

∫
C ∧H3 ∧ F3

Φ is the dilaton and of course not a Dirac �eld eventhuough our notation
unfortunately coincides, H a 3-form torsion �eld strength, related to
the antisymmetric tensor Bµν by

Hµνκ = ∂µBνκ + ∂νBκµ + ∂κBµν

Fi are the �eld stengths of Lie algebra valued forms denoted by A(i−1)

, as a special case of component �elds previously discussed, taking pure
degrees of the exterior cotangent algebra, related to the �elds in the
e�ective actions by

F̃3 = F3 − C0 ∧H3, F̃5 = F5 −
1

2
C2 ∧H3 +

1

2
B2 ∧ F3

The NS − NS action are, according to Polchinski, the same as in
IIA SUGRA, while the R−R and CS (Chern-Simons) are supposed to
be more or less similar.
For type I strings, which we really cannot yet ��t in� in our progress-

ing ��eld theory =⇒ strings� quantization of gravity, and thus may
prove irrelevant, we have

SI = SC + SO,

SC = 1
2κ2

10

∫
d10x
√
−Ge−2Φ(R + 4∂µΦ∂

µΦ− 1
2
|F̃3|2),

SO = 1
g210

∫
e−Φtrν |F2|2,

F̃3 = dC2 − k2
10

g210
ω3

and ω3 a CS 3-form

ω3 = trν(A1 ∧ dA1 +
2

3
A3

1)

14.3. Naive Limit in D = D± = 4. These above e�ective actions are,
as previously stated, true only when considering the total space-time
string geometry in both factors, so they may not be accurate. We can
however, for now, perform a naive dimensional reduction by simply
omitting terms that do not make sense and furthermore go limits an
circumstances where we are close to the classical theory by e.g picing
a vanihing torsion. We obtain for the IIB strings above
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SNS = 1
2κ2

4

∫
d4x
√
−G(RG + 4∂µΦ∂

µΦ),

SR = − 1
4k2

10

∫
d4x
√
−G|dφ|2

φ an unknown scalar.
For the type I theory we have on the other hand

SC = 1
2κ2

4

∫
d4x
√
−G(RG + 4∂µΦ∂

µΦ),

SO = 1
g24

2g2
4

∫
d4x
√
−Gtrν |F |2

where we explictly point out that we did not introduce an Einstein
metric, but instead used the fact that we know that the lagrangeans
are to retain their Weyl invariance in D± = 4, as that was one of the
most charecteristic charecterizations of the four dimensional lagrangens
considered in part II. The above gives us a possible identi�cation of the
unknown scalar above, namely the gauge potential A, which in the low
energy limit should also become a scalar, something that is consistent
with the appearence of the dilaton as the low energy limit of scalings
of the X-�eld, whose scaling behavior we must separate, as we e.g
only want to consider orthonormal vectors as vielbeins. This seems
to con�rm our sucpicion for the action relevant, since we there also
had a pure Yang-Mills term, which we �rstly guessed our way to and
later proved had to be so by the most general admissible lagrangean
(Problem 20, part II. )

14.4. Summary.

• We cited the e�ective actions in type I and type II, D = 10
string theory. After naive dimensional reduction for vanishing
B-�eld, these coincided with the action cited, with the explicit
factor of 4 that �gured on elementary considerations in part II.
In particular we saw that the dilaton interpreted as the norm
of e.g. vielbeins came out as a scalar in the e�ective actions.
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15. String Theory β-functions in D = 10

As the β-functions ought to depend on the way we compute e�ec-
tive actions, this because we may see them as variations of an e�ec-
tive lagrangean, and we do not have the time to remidy any possible
shortcomings in previous formulae of D = 10 string theory, it su�ces
to give the results for e.g the bosonic string in arbitrary D, which
corresponds to only retaing the X0-�eld in components and replacing
superderivatives with usual derivatives, then understood that it may
or may not be physically relevant in physical space in D± on-shell,
D = 2 + 2D± = 2 +D+ +D−;

βGµν = 1
2
RG
µν − 1

8
HµαβH

αβ
ν +DµDνΦ,

βBµν = −1
4
DαHαµν + 1

2
(DαΦ)Hαµν

βΦ = (D−26)
6

+ l2(2DαΦD
α − 2DαD

αΦ− 1
2
RG + 1

24
H2)

, with 2l2 = α′ the Regge slope. These can be obtained as the equations
of motion of

S(G,B,Φ) =
1

2κ2

∫
dDx
√
−Ge−2Φ(RG + 4DµΦD

µΦ− 1

2
|H|2)

For the bosonic string in D = 26, doing a Weyl transformation
Gµν 7→ G′

µν = e−
4Φ

D−2Gµν this gives an explictly Weyl independent
Ricci term in an action of the form

S(G′, B,Φ) =
1

2κ2

∫
dDx
√
−G′(RG′− 4

D − 2
DµΦD

µΦ− 1

12
e−

8Φ
D−2 |H|2)

In string theory G′ is called the Einstein metric while G is called the
string metric. The factor 4 in front of the dilaton term is again accurate
when compared to the formulas of Part II, where we associated it with
Bochner-Weitzenbröck identites.
We can from this, noting how the dimensional reduction fromD = 10

space-time X = Σ×X+ ×X+, X± on shell, try to obtain the on-shell
space-time e�ective action by simply putting D = D± = 4 and simply
discarding terms of too high dimension. We notice at once, before
listing the formula obtained, that when interrelating also the metrics,
me must have

(Gµν, X+×X−) =

(
0 (Gµν, −)

(Gµν, +) 0

)
, this by helicity preserving reasons. We now list the e�ective action

naively obtained. It is
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S(G,B,Φ) ≈ 1

2κ2

∫
d4x
√
−G(RG + 4DµΦD

µΦ)

Since Hµνκ the torsion �eld must vanish at the space-times endowed
with a Levi-Cevita connection, which is the classical limit, and this is
related to Cartan �rst structure equation H = Θ = Dθ = DX1,± =
0, something that we inutioned as version of the classical equation
of motion of a quantum system in part II ( See the Hilbert Einstein
appendix in Part II, where it was related to the Dirac equation) and
we easily see that this intution was correct for vanishing B-�elds. For
the general case on the other hand we were wrong, what we should
have done is to move over H �eld to the other side of the equality sign
and simply written ∇YZ −∇ZY − [Y, Z]−H(Y, Z) = 0, but since we
guessed that vanishing torsion was probably an on-shell condition not
totally wrong in the general case. So that is a case where someone
elses idea is better, and the part II intution su�ced quite far, but not
far enough. Luckily it is has no consequence whatsoever for vanishing
B-�elds for the above stringy formulas, which, because of the reasons
listed above, still may be wrong.
We digress a little bit further on comparisions with Part II, and

in this vein have that the above is exactly what one gets by setting
Xa

0 ∼ Φ, so that one only retains the scaling of a vector and discards
the rest, that is the SO(n,m) behaviour, in the formulas of Part II, and
that this coincides with what we have previously heuristically derived
in the Hawking radiation problem of Part II. The �eld Φ is the the �eld
u in the spin cobordism section in the section �Spin Cobordisms , · · · �
of Part IV, this in general in the subsection entitled �D3-branes/One-
particle Space-times in General�, which is supposed to be related to
time-like evolution of branes, NC geometry in Alain Connes sense etc.,
where we in particular discover (By leaning on Hitchin and a doing
conjecture of our own to generalize) that it is related to an Obata
connection on a Hyperkhler space-time X− satisfying

G− = e−2u(ds2 + η2
1 + η2

2 + η3
3)

η1 = Ids, η2 = Jds, η3 = Kds

We also note that the above relations are also precisely what one
obatins by using the formulas of Part II summarised in the introductory
section of this part.

15.1. Summary.
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• The β-functions in bosonic string theory were cited. These in-
duced e�ective actions by integrating the variation, which, af-
ter naive dimensional reduction for vanishing B-�eld, coincided
with the action given, the explicit factor of 4 inclusive.
• We pointed out in passing the form that the metric must have on
helicity preserving reasons, modulo Wick rotations to Euclidean
space-time, as well as that there are no extra dimensions in
string theory interpreted in that manner.
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16. Mass spectrum and Functional Determinant Relations

in String Theory and Hilbert-Einstein Gravity.

This section is a brief summary of the calculations made in the ap-
pendix �An Example of a Spin Boundary with Relations to Elementary
Analytic Number Theory, Combinatorics, Theta Function Theory and
D-branes.�, in particular the subsections entitled �Strings, Fields, Mass
and Degeneracy�, �Superstring Partition Function and Mass Spectrum
in D = 10� and �Mass Spectrum and Degeneracy� of D3-branes. This
appendix can be found in part IV, and we assume it understood that
D3-brane in our usage is equivalent to what we call one-particle space-
time. In that section we use the parallellizability of space compati�ed
as S3, owing to the interpretation of the quaternionic unit sphere, to
be able to calculate the naive free partition function of the standard
D3-brane in a state of oscillatory motion in the time like direction, and
compare to string theory result, and �nd equivalence. In particular this
implies vanishing homomorphism anomaly at tree level24.

16.1. Summary.

• In the appropriate appendix, we calculate explictly the �quan-
tum� Hilbert-Einstein gravity partition function, and �nd it to
correspond exactly to what we expect, and also generating the
additional degenracy factor associated with the string theory
factor of 16. Hence vanishing �homomorphism anomaly� of the
�rst kind to tree level falls.

24It strikes me, as I write this, that I may be able use that to prove that to all levels
by sewing constructions. Furthermore, for discrete normally convergent determinants I
may be able to prove vanishing homomorphism anomaly at �nite orders for all theories,
in arbitrary admissibility, which would then be a theorem restricted to the category of
closed D-branes. But since the solution spectra will not be obstructed by compacti�cation
of �nice� ends' since they vanish at in�nity, compacti�cation of manifolds with boundaries
and ends will be admissible, hence extending it throughout the smooth manifolds, this
as the Novikov construction of the D-folds is exhaustive, with pertaining sewing along
knots and links. Furthermore, for the case of non-trivial ends, forming closed doubles of
manifolds will resolve the issue that case too. Hence since that will be true for each element
on a generalized superdiagram that includes �nitely many admissibility types, that will
be true for the entire diagram, hence even non-diagonally over the dimension spectrum
of the D-folds, as long as we restrict to integer dimension. I may or may not be able to
extend this to non-integer dimension, however, and it may be that there is a non-trivial
obstruction that I do not see directly. Furthermore, that will only be true at most on a
dense subspace of the Hilbert spaces involved on non-compact manifolds, which may not
even be countably separable, although the closed ones are certainely always separable.
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• As a consequence of the above, we �nd equivalent mass spec-
trum in our quantization of gravity as compared to string the-
ory, this with the understanding that additional degeneracy per-
taing to the factor 16 in the appropriate partition function also
comes out.
• In the appropriate appendix, we �nd mass spectrum at high
masses given by

ρ(m) = m− 3
2 exp(

m

m0

), m0 = const.

where we empasize that this spectrum is discrete, as S1× S3

is compact, and has been turned to contiuum description in the
above.
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17. Introduction to Quantization of The Three theories.

In this very large section we shall be concerned with the quantiza-
tion of the three theories involved. We shall start by a quite heuristic
procedure, just to get a feel for things �rst. Then we shall brie�y sum-
marize a quantization procedure and way of calculating Feynman rules
which was made for the special purpose and experience of quantizing
gravity, which the author calls �geometric� (or �noncommmutative�)
quantization. These names are admittedley ill chosen, as they coincide
with the names of other ideas proposed by other authors which are
only vaguely related, but we feel we have other things to put our mind
to work on than quibbling with ourselves over names an leave to the
readers to choose whatever name they whish for. It is in e�ect a natural
extension of the Baitlin-Villikovsky formalism, BRST cohomology, etc,
encoded in the tensor algebra of an in�nite dimensional (pseudoher-
mitean, pseudoriemannian, or special cases of Banach) manifold and a
relative to the �geometric quantization� in th book of Woodhouse, as
well as with noncommutative quantization, although we shall not go
into the links in this thesis, but merely have provide enough informa-
tion to be able to systematicall obtain Feynman rules of any theory
of any admissibility type, in particular the Feynman rules of our three
theories.
Finally we end this section with a number of examples of diagrams.
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17.1. Heuristic Amplitudes and Crossections of The Three The-
ories. In these subsections we undertake the task of comparing ampli-
tudes, invariant matrix elements, crossections etc between the relevant
theories featuring in our conjecture. The hope is to as far as possible
con�rm that they give the same results. After brie�y sketching the in-
terrelations to the reader, the empahsis is instead put on calculations,
as we feel that this says more. We shall however, omit non-relevant
parts well known to string theorists and quantum �eld theorists in
general, and instead try to concentrate on the non-trivial parts. To
train ourselves in writing down amplitdes in general we shall also write
down high loop amplitudes�although we may not make the computa-
tion, this in order to make the reader have enough examples to look at
to understand the Feynman rules of string �eld theoretic gravity.

17.1.1. Theoretical Developments and Relations. We shall, �rstly, only
opt to calculate the crossections for graviton-graviton and supergraviton-
supergraviton scattering, and only at a much later stage begin to worry
about more general circumstances, this because it is best to understand
the relevant Feynman rules and underpinnings �rst, and for now shall
concentrate on doing so without dimensional overcounting in our test
case. The main tool to pull this o� will be the Chiral Splitting The-
orem and then dimensional reduction of the last dimension via mass
spectral density arguments, related to getting one space-time as a 4-
dimensional space-time wave front in Kleins space-time. Of course the
latter is naive, and would induce severe constraints on the homotopy
type of a space-time if assumed to be embedded in Kleins original R5,
but as we do not do so, rather merely assume that we can put it in
an arbitrary �ve-dimensional space-time, e.g. in the form of the space-
time factor factor in X+ × S1 , this is not a constraint. The diagrams
we are looking at are of the type
on , say, X− the on-shell leftmoving/holomorphic space-time in Σ×

X+ × X−. Let us work with IIB on X = Σ × X+ × X− as we want
the SYM to pop out at the other end, and that theory is symmetrical
in both chiralities. We remind the reader of our three theories, String
D = 10, which is 2-admissible, Hilbert-Einstein, D± = 4, which is also
2-admissible, and �nally SYM, D± = 4 which is 1-admissible. We want
ot interrelate these. To this end we will need the

Theorem 17.1 (Chiral Splitting Theorem, As Stated By E. D'Hoker).
We begin by de�ning factorized vertex operators; A vertex operator Vi

Vi =

∫
dz2d2θWi(zi, θ, z̄i, θ̄i)

238



θ G

G
G

θ

θ
θ

G   µν µν

µν

µν

aa

a

a

Figure 15. Two arbitrarily colliding gravitons.

is factorized provided Vi is the product of holomorphic/leftmoving/positive
helicity and antiholomorphic/rightmoving/negative helicity factors,

Wi(zi, θi, z̄i, θ̄i) = Wi,L(zi, θi)Wi,R(z̄i, θ̄i)

e.g for NS −NS massless states we have

Wi(zi, θi, z̄i, θ̄i) = ζi, µD+X
µeikXL ζ̄i, µD−X

µ
+e

ikXR

the correlation function at �xed internal loop momenta pI ,

pI =

∮
Ai

dzdθD+X

AI a basis for H1(Σ,C) the �rst homology group, dim(H1(σ,C)) = 2g,
g = h the genus or number of handles, is given by

< W1 · · ·WN > (pI) =
∫
DX

∫
DBDCW1 · · ·WN

= Πn=2g
I=1 δ(p

µ
I −

∮
Ai
dzdθD+X

µ)ΠdimMs
k=1 | < µk, B > |2e−(SX+SBC)

Brackets denote insertion�for notational conventions see the refer-
ences. The �rst part of the �Chiral Splitting Theorem� theorem states
that the RNS amplitudes decompose as

< W1 · · ·WN > (pI) = δ(k)CF
ν C̄

F
ν

where CF
ν = CF

ν (zi, θi, ζk,mk, pI , kI)
is a complex analytic function of the supermodulimk, k = 1, · · · , dim sM,

of the insertion points (zi, θi), and of the leftmoving factors ζi,µ of the
polarization vectors.[Brackets denote note added by the author: i.e, the

239



parts only depend on respective space-times.] C̄F
ν is the complex con-

jugate of CF
ν′ with the same spin structure, [So, it corresponds to the

re�ected path in the re�ected copy of a space-time, i.e X5
+ if was the

original leftmoving X5
− copy.] The second part states for IIA/IIB

Ak = δ(k)
∑

Qνν̄

∫
R10h

d10hpIΠk

∫
sMk

dmkdm̄kΠ
N
i=1

∫
Σ

d2zd2θCF
ν C̄

F
ν

and for heterotic E8 × E8, spin(32)/Z2 = SO(32),

Ak = δ(k)
∑

Qν

∫
R10h

d10hpIΠk

∫
sMk

dmk

∫
Mk

dm̄kΠ
N
i=1

∫
dzdθ

∫
dz̄CF

ν C̄
B

Here Qν,ν̄ , Qν are spin structure dependent weight factors wich realize
the GSO projection. If carried out in the supermoduli picture, ν, ν̄
should run over only even or odd, but if the integrals are understood in
components, then one should sum over all individual spin structures in
each class as well. In general Qνν̄ = ±1, Qν = ±1.

We need to adapt this theorem to the situation at hand, with two
stacked space-times, so that we gan get accurate crossections in the
physical dimension D± = 4. This is done like this, notice that what
is necessary to make this string amplitude become a probability is to
factorize, just as in dx10 = d5x−d

5x+

d10p = d5p+d
5p−

on the two o�-shell space-times, and do similarly with the worldsheet
degrees of freedom z, z̄( which are thus to be treated independently).
Then we simply have to project out the states of the appropriate mass
in usual Källen-Lehmann spectral density way for correlators.
We remind ourselves of, e.g. for a free scalar φ,

< φ(x1)φ(x2) >

=
∫

dm2

2π
ρ(m2) < φm(x1)φm(x′2)) >

=
∫

dm2

2π
ρ(m2)DF (x1 − x2,m

2)

DF the usual Feynman propagator. Time ordering (or rather, con-
formal) ordering is always implicit when not otherwise stated, here and
elsewhere in this thesis. One generalizes this easily to

Lemma 17.1.

< φ(x1) · · ·φ(xn) >

=
∫

(dm
2

2π
)nρ(m2

1, · · · ,m2
n) < φm1(x1) · · ·φmn(x′2)) >

where we have ρ(m2
1,m

2
2) = ρ(m2

1)(2π)δ(m2
1 −m2

2).
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Proof.

< Πn
i=1φi >

= {φi =
∫
dm2

iφmi
ρ(m2

2),

φmi
=
∫ dm2

i

2π

dm2
i+1

2π
|m2

i >< m2
i |φ|m2

i+1 >< m2
i+1|

= {< m2
i |φ|m2

i+1 >= (2π)δ(m2
i −m2

i+1)f(m2
i )}

= |m2
i >< m2

i |φ|m2
i >< m2

i |}
=< Πn

i=1

∫
dm2

i ρ(m
2
i )φmi

>

where we recover the familiar spectral density function by, e.g for
complex scalars,

< φ(x1φ̄(x2)) >

=
∫ dm2

1

2π

dm2
2

2π
ρ(m2

1)ρ̄(m
2
2) < φm1(x1)φ̄m2(x2) >︸ ︷︷ ︸

=∆(m2
1,x1,x2)(2π)δ(m2

1−m2
2)

=
∫

dm2

2π
|ρ1(m

2)|2 < φm(x1)φm(x2)) >

with |ρ1(m
2)|2 = ρ<2>(m2) = ρ(m2) the classical spectral density func-

tion.
�

We can use the naïve expectation that all multiparticle spectral den-
sity functions for 1, 2, · · · respectively have the looks

ρ<1>(m2) = (2π)δ(m2 −m2
∞) + ρ′<1>(m2),

ρ<2>(m2) = (2π)δ(m2 −m2
∞) + ρ′<2>(m2),

· · ·
with support supp(ρ′2(m

2)) ∈ [4m2
pair,∞), where mpair is the lowest

individual mass in the lightest pairs which can be created from the φ
particle. m∞ is the interacting mass at in�nity of the S-matrix, i.e the
physical mass. ( This is, of course, also subject to following, e.g, the
Feynman rules of the vertices of the lagrangean, which we go through
later.). In our predicament we can simply neglect ρ′(m2), which en-
ables to return to our previous amplitudes and know what to do with
them when we have reduced the �rst 5 dimensions stemming from the
space-time with opposite helicity. We shall use this to reduce the ex-
pressions to the correct masshell, thereby retaining the 4-dimensional
wave-front in the range of our higher dimensional sigma model and so
have reduced on the domain correctly as well by taking into account
the various other mechanisms as well. It is an accurate observation
on behalf of the reader at this point to claim that we are thus doing
�eld theory on a wave front. And then we map this free (background)
wave front to the interacting wave front corresponding to an interacting
physical system, so that this is what the sigma model map corresponds
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to classically. Due to the nature of wave fronts this means that our
D-branes more look like objects from algebraic geometry than the the-
ory of manifolds, think e.g of how Hamilton-Jacobi equations give wave
fronts as smooth varieties. This wave front mechanism is actually re-
sponsible for most dimensional reductions I know of and is in a �rst
naive approximation best modelled by taking a direct limit over sheaves
of pertaining sections for trivial transversal monodromy to the appro-
priate D-brane and associated algebraic objects in various topological
theories. In particular the mutiplicity of such varieties is coincident
with the concept of N -admissibility as inspected by functional deter-
minants in Part II and IV. One should point out that due to various
singularity blow-up theorems of algebraic geometry etc we can always
locally model our D-brane as a collection of covering spaces of man-
ifolds with di�erent dimension. Usually, we shall do as in this thesis
and simply naively think of it as a manifold. The general situation is
contained in the generalized super (D-brane) diagrams, and we will not
touch this further. Let us go back to our pressing matters.
Hence by the above we obtain, for type II, which is what we concen-

trate on,

Ah = δ(k)
∑

ν,ν̄ Qνν̄

∫
(R5h)+×(R)5h

−
(d5p+

I d
5p−I )n

∫
sM dmkdm̄kΠ

N
i=1

∫
Σ
d2zdθ2CF

ν C̄
F
ν

= δ(k)
∑

ν,ν̄ Qνν̄

∫
(R4h)+×(R4h)−

∫
(R)−×(R)+

dp
Σ−
I dp

Σ+

I

∫
sM dmkΠ

N
i=1

∫
d2zidθ

2
iC

F
ν C̄

F
ν

= δ(k)
∑

ν,ν̄ Qνν̄ |
∫

(R4h)+

∫
sM dmkdp

Σ−
I ΠN

ν=1

∫
Σ−dzidθiC

F
ν |2

= {Set PΣ−
I = m } = δ(k)

∑
ν,ν̄ Qνν̄ |

∫
(R4h)+

dm2

2m

∫
sM dmkΠ

N
ν=1

∫
γ−dzidθiC

F
ν |2

In the above the loop momentum is assumed on the �vedimensional
mass-shell, this so being because the loop momentum is assumed transver-
sal to the evolution direction in �ve dimensions, thus restrainted to live
in four dimensions, as in usual D = 4 �eld theory. Assuming our delta
like-spike in the spectral density and throwing away the o�-shell part
from interactions and other Hilbert spaces than the one corresponding
to the relevant mass states at in�nity, i.e discarding the ρ′ part and
possible other spikes except for the one at the relevant mass-shell, we
get

δ(k)
∑
ν,ν̄

Qνν̄ |
∫

(R4h)+

1

2m
Πk

∫
sM

dmkΠ
N
ν=1

∫
γ−dzidθiC

F
ν︸ ︷︷ ︸

:=M

|2

with γ− the SYM path in the negative helicity space-time. But this
M we also recognize as a very good candidate for the SYM invariant
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matrix element in a sewing construction in the worldline formlation
of �eld theory, if we are dearing enough to interpet the above as a
crossection that missies some simple factors. But since

W± = ζ±D∓X
µ
±e

ikX±

we have, if we include integration over the superpath γ± in either
space-time ∫

γ±

dz±i dθ
±
i D∓X

µ
±e

ikX±

and by D±X
µ
∓ = {Xµ

− = XAA′} = Φ̄±D±Φ∓ or, more explictly,

D∓X
a
± = D∓Φ̄A

∓σ
a,±
AA′Φ

A′
± = Φ̄A

∓D∓σ
a,±
AA′Φ

A′
±

with D± = D±+ω±+A±+· · · the covariant space-time superderiva-
tive pulled back to the appropriate space-time path, and hence, letting
Φ̄DX±Φ be belonging to the usual Dirac operator we get for the free
part

Φ̄(∂γ+ · Γ+ + ∂γ− · Γ−)Φ

with the two parts projected to the world sheet clearly visible in free
form, each part giving the antiholomorphic/holomorphic sector, de-
pending on each rightmoving/leftmoving space-time. Geometrically,
we can thus think of the n-loop Riemann surface with 2g = g+ +g− co-
homology classes in �rst cohomology group, thus by Hurewicz isomor-
phism being of homotopy type π1(S

1 × S1 · · ·S1) ∼=
⊕

2g=g++g−
π1(S

1)

in the middle line of the Hodge decomposition(Σ is compact Kähler,
hence Hodge's decompositon of H1(X,C) ∼= H1(Σ,C) applies) in a
Hodge diamond of the free paths (or rather, background) paths in each
helicty space-time we expand about

(H
(p,q)

∂̄
(Σh=h± ,C)) =

 C
⊕h+C ⊕h−C

C



which is perfect considering the fact that the ∂z̄-operator is the Dirac
operator on a worldline, and is the �usual� part in ∂̄ + iθ̄ = θ̄∂z̄ + ∂

∂θ̄
=

D+, D+ := D/ + = ∂z̄ + θ̄ ∂
∂θ̄
, dz̄ = θ̄, i.e the free antiholomorphic

superderivative, where we used the identies that in Part II permitted us
to recognize that D2 was a Lie derivative, hence generating admissible
lagrangeans. In the above the cohomology classes to the left/right are
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Figure 16. Paths γ+, γ− in the two space-times, and
the string they produce. The above is an example for
h = 1. Hat denotes compati�cation in the above.

thus part of the loop body of a SYM diagram in 5/4-dimensional space-
time X± of the appropriate helicity whilst the other generator comes
from the second D-brane of opposite helicty stacked onto the other.
Of course we can always measure mass and helicity at in�nity of the
S-matrix, so we must stick to the D = 4 space-time at in�nity.
But then we have established that, modulo summation over spin

structures and moduli, since we have recoginzed the SYM worldline
vertex operators in the above construction,

Ah=L,Strings
= δ(k)

∑
ν,ν̄ Qνν̄

∫
(R5h)+×(R)5h

−
(d5p+

I d
5p−I )n

∫
sM dmkdm̄kΠ

N
i=1

∫
Σ
d2zdθ2CF

ν C̄
F
ν

= δ(k)
∑

ν,ν̄ Qνν̄ |
∫

(R4h)+

1

2m

∫
sM

dmkΠ
N
ν=1

∫
γ−dzidθiC

F
ν︸ ︷︷ ︸

:=M

|2

= δ(k)
∑

ν,ν̄ Qνν̄ |MSYM, L|2

where L stands for the loop order of the SYM diagrams in the two
space-times, and γ± the approriate superpaths in the two space-times,
with masses accoring to their curvature. M stands for invariant matrix
element in the above. Notice how well this �ts in with our claim that
string theory deals with full densities while SYM with halfdensities.
We have

CF
ν,m = MνΠ

N
i=1W (zi, θi)

Mν from determinants. What, however, is certainely the case is that
this is a little bit too sketchy, and, furthermore, we did not even touch
the issue of summation over spin structures and moduli, at least not
from the SYM perspective of paths in space-time and stackings. Having
seen this, and admitted the shortcomings to ourselves, we have all the
reasons and most components to state a theorem, and try to attempt
it's proof. We include some things that will be included later in this
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theorem, so that we obtain a fairly large reference theorem that we can
refer back to. We sum up so far before going on to the theorem.

17.2. Summary.

• We displayed above, sketchedly but quite clearly via elemen-
tary methods, how to reduce the string pertubation (or , rather,
when only retaing component �elds of eack space-time, Hilbert-
Einstein) theory series to SYM on the two space-times that
make up, via stacking and two additional mass o�-shell dimen-
sions, the string space-time. We stated that our reasoning, how-
ever, was a little bit too sketchy, and that we wished to opt for
a theorem with proof in the usual sense instead.
• We failed to provide a mechanism that yields summation over
moduli and spin structures in the above line of reasoning, but
claim that we shall remedy this later.
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18. The Main Theorem

Theorem 18.1. Let the IIA/B pertubation theory series be given in
D = 10, and let SYM be given in D± = 4 be given, as well as Hilbert-
Einstein gravity in D± = 4. Then

(1) E�ective Dimension Coincidence: All of these theories are Weyl
invariant in their respective dimension, thus they are in their
e�ective dimensions, to which they tend to when being in other
dimensions.

(2) Probability interpretation −→ strings/Triality statement: There
are, pointwise in the moduli, bijections

IIA/B ⇐⇒ (Q.)H.E ⇐⇒ SYM

in terms of diagrams of the theories in the various admis-
sibility types, then not incuding the overcounting of diagrams
caused by di�erent helicity and color quantum numbers, which
causes matehmatically identical copies, which may or may not
di�er by values of physical constants etc. In �eld components it
is given by

(Xµ) = (Xµ+

+ )⊕ (Xµ−
− ), (D = 10 7→ D =±= 5/4)

Xµ
± = Φ̄∓σ

µ
±Φ±, (H.E, D± = 4 7→ SYM, D± = 4)

Xµ, αβ
± = Φ̄∓σ

µ
±T

αβΦ±

and the space-time vectors thus obtained are TpX ⊗ U(NC)
valued, i.e take values in the Lie algebra over a space-time point,
this by tensor product formulae.25

(3) How to Compute Ampiltudes and Crossections:A mass-�xed string
diagram and amplitude in D = 10 Matrix space-time corre-
sponds to the square of an invariant matrix element, i.e a crossec-
tion of SYM in D± = 4.

25The reader is implored to notice that the last formula is related to the color
averaged formulas by traces in Lie algebras. This does not, however, necessarily
imply that one generically has vanishing average �elds since the generic gauge group
is not U(N), but rather GL(NC , C) for �nite time S-matrices. When considering
S-matrices at in�nty we reduce to U(NC), which corresponds to the case above,
but must be careful not take a trace when discussing physical currents at any time,
this as color is observable. This is like usual probability currents, if we average over
colors naively by a trace then we get zero probability current, but this does not
imply inexistance of physically measurable quark currents. The reader who insists
at taking averages over U(NC) in particular for S-matrices at in�nity for some valid
purpose may take averages in other ways at in�nty, e.g the obvious, just sum them
and divide by the rank of U(NC). E.g, the space-time we see is the color average
in this second sense in U(1)× SU(2)× SU(3)× · · · .
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(4) Field Interpretation: With �elds as follows; X0 the embedding
via exponentiation, X1 = θ the vielbein as a vector valued form,
which corresonds to Dirac matrices, Φ0 the squarks, correspond-
ing to sigma model maps on and into the twistor/spinor brane,
locally having tangent C4 ∼= T, and Φ1 the vielbein in twistor/spinor
space, also simply called Dirac �eld. A twistor brane is called a
Y -brane in the following, as in X, Y, · · · . Furthermore, this is
compatible.

(5) Maldacena Statement: If regarding the o�-shell string space-
time obtained by the usual SYM topology S5 ∼ AdS5 on the
factors, then we obtain the statement of the classical Malda-
cena conjecture on AdS5 × S5.( This is a conjecture of Juan
Maldacena, and only the proposed underlying mechanism is the
authors.)

(6) D-brane/C∗-algebra correspondence to NC Geometry: On rele-

vant twistor integrable space-time backgrounds ( vacua) with
reasonable physical properties the Eucidean space-times are Weyl
selfdual and hyperkähler, with metric

GX− = e−2u(ds2 + η2
1 + η2

2 + η2
3)

, u being a harmonic dilaton �eld, corresponding to scalings of
the X �eld (this statement is due to Hitchin and not to the au-
thor). ( The authors claim, which is a conjecture, now follows).
This gives a NC geometry correspondence by the conjecture (See
the appropriate appendix):

Conjecture 18.1 (NC-Geometry/ D-brane Correspondence).
Let det : A 7→ C be the determinant homomorphism from an
appropriate C∗ algebra to an appropriate �eld, here taken as
C = RC. Then, after continuation to the Euclidean region so
that the unitary action of the Hamiltonian is a scaling of the
determinant instead of preserving it, we have our spatial sets
induced by varieties of the form det(O) = c, c ∈ C, where it is
understood that we act by the determinant on appropriate initial
value data on a spatial slice at some a priori given instant on a
D-brane.

This last conjecture gives a natural interconnection to Morse
theory, thus in a special case (the above) foliating a space-time
by the dilaton. Another example is in �ve dimensional space-
time where we have foliation by the Ricci scalar to obtain uusual
space-times corresponding to various masses.
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(7) Physical Predictions: and this su�ces to make eight physical
predictions.

Proof. The proof of this theorem is spread all over this thesis. We shall
only be concerned with the parts that �t into this context presently and
instead refer to the proper proofs in appendices and elsewhere when
we can do so.

(1) Weyl Invariance: Is trivial/well known for the Lagrangean in
D = 10 string theory at the classical and quantum level respec-
tively, as mani�sted in Weyl invariance of the world sheet la-
grangean and vanishing Weyl anomaly in that order. For string
theory we cannot regard the invariance dimension lagrangean as
the space-time invariance dimension of the theory since the la-
grangean lives on only the world seet and not the entire stringy
space-time. Hilbert-Einstein gravity, on the other hand, is obi-
ously dealing with self maps in terms of higher dimenisional
sigma model maps in a space-time lagrangean, so it su�ces to
look at the classical invariance dimension of the lagrangean if
it is consistent with an assumed invariance dimension at the
quantum level, which is easily seen to be D± = 4, where we
again remind the reader that the Riemann curvature with co-
e�cents in the various gauge groups is functionally dependent
only on the connection a priori. That the Yang-Mills part in
SYM is well-known to be Weyl invariant, as well the interaction
part of the SYM has Weyl invariance is also trivial by normal-
ization conditions of spinors, which gives them their dimension.
Now we must prove this to hold at the quantum level too. In
the operator �eld formulation of quantum �eld theory the am-
plitudes will, however, be the result of the time-ordered expo-
nential action of the interaction lagrangean, which is trivially
seen to retain the Weyl invariance of it's classical counterpart.
Hence, remembering that the vacuum normlization will scale in
the same manner as the unnormalized ampliude, Weyl invari-
ances of the ampliudes in Hilbert-Einstein gravity and SYM
must fall. To ty it up we must show the existance of an opera-
tor formulation of Hilbert-Einstein gravity, which is mentioned
in the subsequent section �Geometic Quantization of D-branes�,
which is there shown to exist under the axiom of existance of
path integrals, an axiom which we, as previously stated, are
subject to in our reasoning.

(2) By the Chiral Splitting Theorem, we have, indeed,
=⇒ :
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Ah = δ(k)Qνν̄Π

∫
dmkdm̄kC

F
ν C

F̃
ν̄ = δ(k)

∑
spin stuctures, moduli

|CF
ν |2

so with CF
ν = MνF ,

F = ΠN
i=1

∫
dzidθiW+(zi, θi) == ΠN

i=1

∫
dz̄dθ̄ζµ, +DXµ

+

The above corresponds to LM−theory/II = |DX|2 = X∗(D+D−⊕
D+D−)X. Looking at the various chiral parts, we recognize the
SYM world line vertex by

ζµ, +D+Xµ
− = ζµΦ̄+σ

µ
+D+Φ−

the left corresponds to LQ.H.E, D±=4 = X∗
+D+D−)X+, while the

right to LSYM = Φ̄−D − Φ+. Reducing dimension in this way
by �xing the mass to localize the front, which we can by using
using the spectral density, e.g

φ(xi) =

∫
dm2

2π
φm(xi)ρ(m

2)

φ an arbitrary �eld, we have SYM on D± = 4. Hence LSYM =
Φ̄∓D∓Φ± comes out.
⇐= : Conversely we have for SYM/Gauge theory, setting

Xµαβ
+ = Φ̄σµ+T

αβΦ

the components of a space-time supervector, e.g the usual
embedding

Xµαβ
0, + = Φ̄0σ

µ
+T

αβΦ0

for squark �elds Φ0, we obtain in SYM treated in worldline
formulation in a PI vertices

ζaµD+Xµ
−e

ik·X

by the related

σaΦ̄−σaD−Φ+ = σaD−Φ̄−σaΦ+

i.e in the terms of exterior forms, which gives us when projected
onto the worldline

ζµD+Xµ
−

We must now show that X± truly are X± ⊗ U(NC) valued
(via exponentiation, that is), but this is easy since the de�ning
formula
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X± = TαβσaΦ̄∓σaTαβΦ±

gives so directly.
(3) This was proved already in the course of the proof of II.
(4) X0,X1 :

We expand the X �eld on, e.g, the negative helicity one-
particle space-time. Then, retaining only the �rst two terms,

X = X0 + X1 + · · · = X0 + X1,µθ
µ + · · ·

we see that X0 is a vector. Hence in the integrated picure, i.e af-
ter applying the exponential map, this is a�possibly singular�
�embedding�. X1µθ

µ on the other hand, by being a vector val-
ued form of the appropriate type, is seen to be a vielbein. We
prove that these X1µ, ±θ

µ
± also de�ne gamma matrices, by using

X1µ, ± = δaµ in �at, or rather the background, space-time. In
the operator picture this becomes�as usual we include the dual
�eld in the operator picture as di�ering from the picture with
classical �elds in a lagrangean�

Γµ± = θµ,± + θµ,∗,±

which gives

[Γµ±,Γ
ν
∓]

= (θµ,± + θ∗,µ,±)(θν,∓ + θ∗,ν,∓) + (θν,∓ + θ∗,ν,∓)(θµ,± + θ∗,µ,±)
= 2δµν

Φ0,Φ1

There is no doubt for the interpretation of Φ1, A dz
A︸︷︷︸

=θA

the clas-

sical spinor, and it is much studied in particle physics as the
4-component Dirac spinor, and in view of Φ0 = [ΦA

0 ] taking the
same form as X0 but in another space, considering consistency
requirements among formulations, it has to have the same in-
terpretation. Now it remains to show that this is compatible
with the de�nition of X. We have

Xa
+ = Φ̄+σ̄

aΦ−
= (Φ̄0, + + Φ̄1, +)σ̄a(Φ0, − + Φ1, −)
= Φ̄0,+σ̄

aΦ0,− + Φ̄1,+σ̄
aΦ0,−

+Φ̄0,+σ̄
aΦ1,− + Φ̄1,+σ̄

aΦ1,−

Now anyway we want to handle this, the trick lies in recoginzing
that an X �eld is but a current( Currents are dual to positions,
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so that is ok and not contradictory.) We could, e.g, directly no-
tice that the appropriate superintegration, something that we
must perform to obtain the usual current, would scrap the terms
with mixed grading, hence giving us the consistency we opt for
when comparig component formalism with non-component for-
malism. We must also show that the zero points of the di�erent
�elds have been consistently chosen. Since we decided to have
a �eld rede�nition, see part II above from the de�nition of the
operator �elds,

eaµ 7→ δaµ + eaµ

this, e.g, so that that interacting vielbein components be van-
ishing at in�nity and hence amenable to Fourier analysis. We
see, directly, that since interacting spinors have to vanish at
spatial in�nity, that we at least have consistency in our choice
of zero point at spatial in�nity. Hence consistency of choice of
�eld zero point also falls. We must also show that X1 indeed
de�nes a vielbein when written in components, i.e a graded vec-
tor �eld of the appropriate kind. But using the map provided
by the vector (not algebraic) space isomorphism Cl 7→

∧
the

Cli�ord algebra of some space and it's exterior cotangent alge-
bra, we note by (before projection to the exterior algbra of the
Y -brane)

Φ̄−σ
aΦ+σa,AA′dz

A ⊗ dz̄A′

that we get

Φ̄−σ
aΦ+θ

a

just as should be. Hence we are done proving consitency
among �eld de�nitions.

(5) Now we wish to prove Maldacena correspondence in string space-
time. Take o�-shell space-times of various helicities to be simply
R5
± compacti�ed, then we have S5

+×S5
−. Notice that the dimen-

sion of the spinors on the SYM's of the two helicities on the two
space-times is appropriate. By continuation we get AdS5 × S5

as claimed, and since we know that the string amplitudes are to
coincide with the Yang-Mills amplitudes summed over moduli
and spin structures we are done.

(6) Please see the appropraite appendix in Part IV. Interpreting a
u �eld staisfying

Gµν, − = e−2u(ds2+η2
2+· · · η2

3) = θ0⊗θ0+θ1⊗θ1+θ2⊗θ2+θ3⊗θ3 = δabXa
1⊗Xb

1
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as a dilaton the result follows by theorems of Hitchin and our
conjecture based on his results, elementary C*-algebaric theory,
and �eld theory.

(7) See the pertainings solutions to the problems that give, e.g,
(a) Hawking Entropy.
(b) Hawking Radiation.
(c) Mass in terms of curvature.
(d) The entire classical limit, this as we are dealing directly

with the Hilbert-Einstein lagrangean. Independently, we
have also checked occurrence of post-newtonian limit.

(e) Gravitational crossections as given above and below, in
particular for graviton-graviton scattering.

(f) The entire SYM sector, in particular QCD, Electroweak
theory and QED, with crossections. In particular standard
model physics must fall, and hence the experiments that
have been con�rmed in that sector for more than 50 years.

(g) Expansion rate of the universe.
(h) The physical dimension D± = 4, consitent with Weyl in-

variance of string theory in D = 10 with two o�-shell di-
mensions.

(i) Mass spectrum, in particular coinciding with string theory
dimensionally reduced in the appropriate way.

(j) Coinciding e�ective actions and β-functions in the physical
dimesion with vanishing torsion.

(k) Cosmic censorship of naked singularities, as generated by
BPS bounds on black branes in string theory.

(l) Thermodynamic �ows of equilibria of interstellar molecu-
lar clouds in weak inhomogenous background gravitational
�elds. In particular, detectable by spectral emissitivity
checks in the appropriate domains.

(m) Standard mass additivity formulas of black holes, corrected
to the dependency of particle physics mass additivity for-
mulas by our quantum considerations.

(n) Gravitational quantum noise deviations from the classi-
cal path in weak inhomogenous gravitational background
�elds. In particular this can be used to calculate the grav-
itational noise in a laser signal in targeting a detector in
space or in a inhomogenous graviational �eld a�ecting elec-
trons in a metal.

�
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We also have the lemma, that generalizes the concept of 2-admissibility
and it's underlying mechanism here, and sums up problem 16 and 20
in a clean way.

Lemma 18.1. We have an isomorphism

ΠN
i=0φi(xi) 7→ ∗σN

the Poincare duals of N-simplices of the appropriate kind.

Proof. By the Feynman diagram rules, we do not, apriori, treat the
way we graphically represent the Feynman rules in a di�erent way for
boson �elds as compared to fermion �elds. We note that the above is
an obvious isomorphism for classicall fermions , given by the fermion
Φ1(x) = ψ(x) from space-time to a graded algebra. Hence we con-
clude that this must be so by symmetry of interpretations under the
assumption that the rules exist. But since the existance of Feynman
rules and the worldline formulation is here treated as an axiom, this
must fall. �

Lemma 18.2. ∃ unique lagrangean that has generalized supersymmetry
and is diagonal over admissibilities 1/D, and it is given by

L = X∗
G,±D∓D±XG,∓

furthermore, when the �elds contracted with the vertices Vu of this la-
grangean are disidenti�ed they give terms of admissibility type N , where
N + 1 is the number of attached �elds, as ∗V the Poincare dual is the
graphic representation of the vertex�or simplex, we are, after all, deal-
ing with Hilbert spaces�

VN =< ΠN
i=1φi(xi) >

Proof. By problem 20, part II, the �rst statement falls. Thus in view
of the previous lemma the second statement falls. �
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19. Geometric Quantization of D-branes and D-brane
Feynman Rules

In this section we go through�in brief manner� a quantization
procedure that will give us the Feynman rules in a particularly handy
way.

19.1. Geometric Quantization. Let H1 be a local coordinate chart
(the direct sum of one-particle Hilbert spaces) on X an in�nite di-
mensional manifold, of pseudhermitean, pseudoriemannian, Hilbert or
other appropriate type such that the �ber of a tangent bundle is a
identi�ed with a quadratic vector space, with the understanding that

T ∗X ∼=
1∧
T ∗X ∼= H∗ ∼= Cl1(X)

We have �eld operators, which one maps the classical �elds to by the
vector space isomorphism

∧
7→ Cl,

X := X̂i = Oi ⊂ Cl(X) ⊂ HomC(H,H)

and tensors

ω ∈ H
,H = ⊕∀ orders p∈Z,∀ possible orderings and factors at each order p ⊗relevant factors Hi,
H−1
i = H∗i
We also have a symplectic form,

ωAB = ω(XA
1 ,XB

2 ) =< XA
1 XB

2 − (1)pqXB
2 XA

1 >

with the usual identites of symplectic geometry and �eld theory relating
to this as usual. More generally,

ωA1A2···An

= ω(XA1
1 , · · · ,XAn

n )
=< XA1 ⊗ · · · ⊗ XAn

n , ω >

from which we deduce that ωAB must be antisymmetric. The above
satisfy, depending on which day of the week it is and the mood of
the reader what are called Dyson-Schwinger, Slavnov-Taylor, Baitlin-
Villikovsky, BRST conditions or suchlike (They are all the same when
generalized) by setting D2 = L = Q a charge operator in a calculus of
full densities (e.g. the X-�elds in string theory) which can be written
as

D2ω = Lω = 0

or for halfdensites (e.g Φ-�elds in SYM),
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Dω = 0

. In the above we truly mean the covariant derivatives and nothing else,
so this automatically includes the mass term that otherwise would have
appeared in the charge operators. In a calculus of full densities this
works out, e.g, as follows: Since L is a Lie derivative,( that is why it
generates admissible transfrmations, i.e �ows) it satis�es the Leibniz
rules of Lie derivatives, so

LωStrings(X1,X2, · · · ,Xn)
= (n := 1)
= (Lω)(X1) + ω([X2,X1])
= (Lω)(X1) + ωCX2,AX1,B∆C

AB

= (LAω)BX2,AX1,B + ωCX2,AX1,B∆C
AB

= ((LAω)B + ∆C
AB)XA

1 XB
2

which gives, since the linearity of the Lie derivative means that we can
move out the index of the operating vector �eld,

−(Lω)AB = ωC∆C
AB

as an operator equation. In the same vein we have for halfdensities,
where we for simplicity stick to the same notation as we have previously
used for halfdensities,

DωSYM(Φ2) = (Dω)(Φ2) + ω([Φ1,Φ2])
= (DAω)BΦ1,BΦ2,B + ωCS

C
ABΦAΦB =< Φ1|DωSYM + ωAS

A|Φ2 >

which gives the statement that

−DωSYM = ωAS
A

which we recognize to be the Euclidean Dirac equation, the latter cor-
responding to the general lagrangean for half densities

LSYM, G = Φ̄GDΦG

while the former to
LM, G = X∗

GD
2XG

for full densities.

19.2. Relation to Feynman Rules. One can use the above to cal-
culate Feynman Rules in a more systematic way. We have

S =
∫
dDxL =

∑
A1>···>An

ωA1···AN
XA1

1 · · ·X
AN
N =

∑
1
|A|!ωA1···AN

XA1
1 · · ·XA1

N
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directly the vertices and propagators in a lagrangean as the tensor
component entires ωA1···AN

. 26

i.e from amplitudes and expressions of the form

ω(X1, · · · ,XN) =< [X1, · · · ,XN ] >

[· · · ] denotes the appropriate symmetrizer of �elds. E.g in a multi-
particle function related to the Generalized Clebch-Gordan coe�cients
of the reduction of parallell transport of the tensor product of isom-
etry subalgbras of the automorphism algebra of the relevant Hilbert
spaces in the �ber over space-time, so that the paralell transport is
diagonal in multiparticle Hilbert space classi�ed by the total charges
Q =

∑
Qi, e.g the degree charge Qi = deg(Φ)

2
, Qi = deg(X), something

that we really in �eld theory never have to worry about, since we only
look at propagation on the vacuum of lowest total polarization Q of
total charge, where the functions, heuristically, are antisymmetric for
fermion entries and symmetric for boson entries. For a simple exam-
ple of a non-trivial vacuum, take the total spin state l = 1,m = 0 of
two fermions coupling, it �gures a multiparticle amplitude symmetric
in fermion factors. Trivial vacuum means lowest vacuum here. Our
procedure is general enough to include all vacua.
We must now include the basic elements of computations of Feyn-

man rules in one way or another. Usually, one isolates the terms in
the lagrangean of each de�nite type, and then one (anti)symmetrizes
carefully over identical particle entries, thereby remembering to ap-
propraitely move around the various indices. However, we shall do
the same thing in a slightly di�erent way. We use the entries of a
lagrangean directly as rules by putting < · · · > around the terms as
above, while keeping outgoing particles in a de�nite Fourier mode. By
noticing that a trace tr has both the property that it appears in or
Lagrangeans and is cyclic, i.e has a certain symmetry property under
certain permutations, we generalize this to str, which has the propery
that it is of the appropriate symmetry between identical �elds, so that
it becomes a symmetrizer of �elds of the appropriate kind. Finally,
we take the amplitudes that we then have as vertices and contract the
�elds within the traces to make up a diagram. That was a little bit
brief, so let's take it again: We have correlators and we contract the
�eld in a correlator with �elds�which are of the same kind usually,

26Remark: We see here that one has identi�cation of space-times to only retain
one integral over one-space-time at the end. Concretely, to give an example of a
similar situation, one sometimes uses this the other way, by introducing delta func-
tions so that one has to integrate over additional space-times, e.g when calculating
position space propagators.
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this since the symplectic structure usually is diagonal over di�erent
�eld species�outside of that correlator to make up the �nal diagram.
So one can read each contraction as 'Goes to', then meaning that the
particle went to that second place in space-time from the original place,
where the original �eld was located. Since the space-times are anyway
copies of each other when identi�ed that still makes sense. So that is
the way that manyD3-branes are a multiparticle space-time, which can
then be measured as perturbations on a standard copy, namely usual
background space-time, and that is also the way that we are going to
calculate our rules. Finally, since each contraction etc can be expressed
in usual canonical sewing of D-brane partition functions(with appro-
priate ghost factors included in them, e.t.c.) that means that we get
the D-brane Feynman rules directly. A picture in section 10, strings
and D± = 4 CFT, Part I, illustrates this sewing.

19.3. Informal Questions and Answers.

(1) How many D-brane diagrams/manifolds are generated in this
way?
Answer: By the Novikov construction of theD-folds, this proce-
dure is exhaustive. However, overcounting of homeomorphism
type is a recurrent phenomemon, so one cannot use this to enu-
merate the D-folds by generation.

(2) In higher dimension there are exotic structures-
should one sum over them?
Answer: Naively, one would guess so. But it's hard to say,
really. The best I can give in that direction is to calculate
speci�c examples and see how they come out. So , really, there
is not much I can say about that. Please alo see the below on
spain structure and moduli.

(3) I have noticed that one and the same collections of spaces in
D-brane diagrams, i.e leaves in a foliation, can be cobordant
to a lot of di�erent diagrams of di�erent topology. Are those
diagrams the generalization of �multiloop�?
Answer: Yes.

(4) I do not understand what �cobordism� means�is it equivalent
to bulk?

Answer: In the present usage, which is admittedley a little
bit sloppy, yes. Usually one di�ers between di�erent cobordism
types, such as KO, K or spin cobordisms.
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(5) In the section on generalized supersymmetry (e.g, Problem 20)
it said that we are supposed to look at all theories of all admis-
sibility type, so are we supposed to look at all the propagators
of various admissibility types?

Answer: Precisely!
(6) Ok. So I get it. But I still think it's sloppy. Why don't you

improve the rigour?
Answer:

1) Because if I did, you would loose focus. You'd think we are
her to discuss Feynman rules. We are not. We are here to
quantize gravity a couple of times, and we need to concentrate
on that task.
2) Because it is much better to calculate an entire bunch of ex-
amples to check the various hypothesis to see if we are right, at
least in terms of giving us con�dence in our lofty ideas. At least
I think so. And when we do the calculations we may discover
things which are important to a systematic theoretical develop-
ment. We shouldn't try a systematic development unless we are
absoloutly sure that we know what we are doing. Are you abso-
lutley sure of what we are doing, in the sense of each technical
germ?
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19.4. Some Examples of Feynman Rules. Above all, we are inter-
ested in graviton-graviton scattering in our three theories. So we focus
on the rules relevant to those interactions, and furthermore do not
mention the rules for SYM. Then is then used to generate a diagram
buy contracting �elds, e.g. in the diagrams (CONTRACT)

Ah=0 = str(X∗
±Ω/ X∓)str(X∗

±Ω/ X∓)

usually we substiute out the smooth coe�cient of the outgoing parti-
cles, so that XaΓa is used when Xa is dropped. Because of the identity∫

[dX]H1⊕H2 =

∫
[dX]H1 [dX]H2

which in particular implies that integrals factorize in independent de-
grees of freedom for independent multiplying factors in an integrand,
the above can be used to calculate arbitrary diagrams of arbitary ad-
missibility type (even mixed) from the components of these diagrams.
E.g, sticking to string diagrams we would expect (of course, naively)

X1,A CONTRACT X2,B =< [X1,A,X2,B] >
=
∫
cylinder, or carpet

[dX][dC][dB]e−S[X]−SBC [B,C]

(Xa(z, z̄, θ, θ̄)Xb(z′, z̄′, θ′, θ̄′)− Xa(z′, z̄′, θ′, θ̄′)Xb(z, z̄, θ, θ̄))

the above then yield the string �eld theory Feynman rules for the three
theories, and in particular the matrix notation goes well hand in hand
with matrix valued space-time. I must, however, be staated that rig-
orously the entire procedure of calculating the PI to ghost form on the
relevant D-brane world volume must be repeated for each case, but
which hopefully goes without saying.
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20. Explicit Checks of Ampliudes.

20.1. Tree Level Amplitudes. We start o� with the string ampli-
tudes, then compare them to the Q.H.E amplitudes and SYM ampli-
tudes, D = 10, D± = 4 respectively. We work excusively with NS-
NS massless states in IIA/B theories�up to some tachyon amplitudes
used to exemplify the calculus in the beginning. Again, we stress that
ωA = ω + A and Ω = RA = DωA = dωA + ω2

A are functionally inde-
pendent of the metric G and/or vielbein θ = X1. This is important,
as this provides vertices�to both the Q.H.E, the SYM and something
similar in II A/B string theory.

20.1.1. N Tachyons. We start o� by the simplest, but totally arti�cial
case, of N tachyons on loop order h = g. Then we have

< ΠN
i=1 : eik·X(zi,θi) :>

= e−∆µν,AB∂µ,A∂ν,B <: ΠN
i=0e

ik·X(zi,θi) :>
= e−∆µν iki,µikj,ν <: · · · :>
= {∆µν = ηµν(ln|E(zi, zj)|+ Sν(zi, zj)θiθj)}
= Π1≤i<j≤N(E(zi, zj)exp(Sν(zi, zj)θiθj))

ki·kj

Where E is the prime form (Lecture 5, E. D'Hoker) and Sν is the
usual Szegö kernal on the spin structure indicated by ν on the ac-
tual Riemann surface of genus g = h. Hence for the sphere, by
ln∆(z, z′)S2∼=CP 1 = z − z′ − θθ′, we get

(2π)DδD(
∑

ki)Πi<j|z12|ki·kj

zi−zj−θiθj. This is not to be squared further, since string theory deals
with full densities, according to our �strings in quantum theory ↔ full
densites in a formalism for half densities�- philosophy, as exempli�ed
by the �rst theorem of this part.

20.1.2. N Gravitons. We set vertex operators

εµ̄νD+Xµ
−D−Xν̄

+e
ik·X

Where we use bars to denote quantities belonging to the positive helic-
ity space-time, this by analogy to complex notation, although dealing
with real (although perhaps complexi�ed) geometry.
By covariance

ηābD+Xa
−D−Xb̄

+ = ηābe
a
µ̄e
b̄
νD+Xµ

−D−Xν̄
+ = eµ̄eνD+Xµ

−D−Xν̄
+

where we skipped the degrees of freedom transversal, or, equivalently,
codimensional, to the world sheet Σ = γ+× γ− in the last line. Hence,
expanding by
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Gµν = ηµν + εµνe
ik·X

We recognize, since only helicity preserving second variations can
remain for a vielbein expansion from an onshell background of our
particular lagrangean, that

εµεν̄ = εµν̄
We can use, e.g, ζ := e+µ e− to disitinguish better in the following,

where e− is the ON holomorphic vector paralell to the world sheet,
so that ζ, ζ̄ are odd grassmannians. Then we obtain, by the Chiral
Splitting Theorem,

< Πi=1 : ζi,µD+Xµ
+e

iki·Xi,+ :>
=< ΠN

i=1 : ζi,µD+
1
i
∂
i
∂
∂ki
eiki·Xi,+ :>

= ΠN
i=1ζi,µD+

1
i

∂
∂ki,µ

<: eiki·Xi,+ :>= ΠN
i=1ζi,µD+

1
i

∂
∂ki,µ

ΠN
i=1 <: eiki·Xi,+ :>

= ΠN
i=1ζi,µD+

1
i

∂
∂ki,µ

Πi<je
ln|z12|ki·kj

= ΠN
i=1

∑
i<j ζi,µS

µν
ij,+kj,νΠi<j|z12|ki·kj

There remains determinants etc. In the above Sµν+ = D+∆µν .
But, let us� before proceeding�consider if this is physically real-

istic, and if so what this corresponds to. Now, in the ON frame, our
favourite frame, we have

L = ηabD+Xµ
−D−Xµ

+

in order to obtain our chirally split amplitde, we used Xa = eaµX
µ
+ a

change of frame from the coordinate frame, and this gave us us our ap-
propriate term. For this to hold, however, eaµ need be superholomorphic�
and this is may (or may not ) be reasonable. What more, the above am-
plitude implies that several fermions�without intermediate bosons�
are interacting with each other. To understand the puzzle, and how
our Feynman rules resolve the issue, we shall halt a little bit and see
that we have intermediate particles as usual�it just a little bit hard to
see them right now. To be precise, the above corresponds to a diagram
with a 1P1-blob in the middle and two external legs. This certainely
not explicitely the kind of diagram we want to look at, for we need one
where what is going on in the centre is visible. We need vertices, in
brief, and where to put them. So let us get them. We have

LD=10 = LQ.H.E//Σ = ηcdXc
−(D+D− +Rab

[Γa,Γb]

2
P−)Xd

+

where we have identi�ed γ+ × γ− = σ ⊂ X
(5)
+ ×X

(5)
− and put not bars

on the indices, since we now assume it understood that the various
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gravitons can have di�erent polarizations. Rab = D[aωb] is functionally
independent of the metric. We can expand around ω = ωA = 0, i.e the
pure gauges. Then, by

Rab = ∂[aωb] + ω[aωb]

we get, including an i from the coe�cent in front of the action,

ηabXa
+iRabΓ

ab
−Xb

−
= ηabXa

+i(−ik[aωb]Γ
ab
− + ω[aωb]Γ

ab
− )Xb

−
= ηabXa

+i(−ik[aω
α
b]TαΓ

ab
− + δc[aδ

d
b]ω

α
c ω

β
d [Tα, Tβ]Γ

ab
− )Xb

−

We need to calculate the result of the str's. We do it on the lowest
vacuum.
For the �rst term this gives

ηabδ
d
b δ
c
[aXakc]ω

α
dTalphaXb

−
= ηabXa,α

+ kcω
αCαβγXb,γ

Hence
ηabCαβγkcδ

c
[aδ

d
b]

= ηabCαβγkc(δ
c
aδ
d
b − δcbδda)

= 2worldonlegs+ 1connectionleg

In the same manner, for the second term we have

iηabXa
+ω

α
aω

β
b [[Tα, Tβ], ·]Xb

−
= Xa,κ

+ iηabCαβγCγδκXbδ
−ω

α
c ω

β
dΓ

cd

= [iΓcdηabCαβγCαβγ]Xa,κ
+ Xbδ

−ω
α
c ω

β
d

Hence

iΓcdηabCαβγCγδκ = 2worldonlegs+ 2connectionlegs

That actually completes the non-YM part of the quantization, with
Feynman rule

∆ab =
−iηab

�+m2

inserted, which is obtained by inverting the quadratic part, and S± =
D±∆ab.
We now know the SYM part. Then, with Xµα

− = Φ̄−σ
µTαΦ+ as

usual relating the string �elds to the SYM �elds via Hilbert-Einstein
Fields, we have the �usual� Feynman rules�which can be looked up
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in any textbook�for the component �elds. But then we have to re-
meber to square the amplitudes at the end since we are deling with
halfdensities in SYM. Thus we seem to have the necessary components
for our purposes, nmaely graviton-graviton scattering at low loop. The
process with a 4-graviton diagram at tree level, resembeling the one
we decided to doubt slightly since we could not see any intermediate
interaction bosons. We shall see that the ampliudes are equivalent and
they actually, just as one would suspect, are the same diagram. The
right diagram above is in the SYM picture while the above left diagram
is in the string picture.
The ω-�eld can be set to be only SL(2,C)-valued, so that we skip the

Gauge space-time degrees of freedom, and we can retain only the Φ1,±
component of Φ±, i.e the usual Dirac �elds. Then-please note that the
Diagrams needed correspond to each other directly, so we can compute,
for electrons in one-particle space, and consequently make calculations
on the Vielbeins, the invariant matrix element as, in SYM,

M = ū− gG(M)TαΓau
−i

k2−m2
ω
ū− igG(M)Tβu

= (−i)3gG(M)2ū(k1)TαΓau(k2)
1

k2−m2
ω︸︷︷︸

:=0

ū(k3)T
βΓau(k4)

, k = k1 + k2 = k3 + k4

which implies, if we let
∑

mean spin average and supress both the
coupling factor and the spin normalization factor,

∑
|M|2 = ūs(k1)TαΓaus′(k2)

1
k2us′′(k3)T

αΓaus′′′(k4)ūs′′′(k4)T
β

Γcu(k3)
1
k2 ū(k2)TαΓ

cu(k1)
= · · · ū(k3)Γ

aTα(k4/ −m)T βΓau(k3) · · ·

and thus should yield, as the calculations here after coincide, the result
listed in previous calculations.
We notice that the above is quadric in the boson propagator as we

have to look at both string end points propagating in string space-time.
The SYM cannot give any other crossections of the type we are looking
for at order α2 = (gG(M)2

4π
)2. We can now check the stringy crossection.

We should, if we are right, be able to recognize the chiral stringy parts
in the SYM crossection as the matrix elementsM,

M = ūs(k1)TαΓaus′(k2)
1

k2
ūs(k3)T

αΓau(k4)
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a clearly restrainted condition. Setting

D± = θ±∂ · Γ± + ∂
∂θ±

∆ = i
�+m2 δ

4
θ(θ − θ′)

S± = D±∆

we can check the SUSY answer too, and we see that it would not
change. We can go back to the string version then� with the under-
standing that we will have to include vertices in the series, which are
to be doing what the ChanPaton rules usually do. Hence we obtain

=
g4

4︸︷︷︸
includes spin factor

1
(k1+k2)4

tr[D+X+D−X1]tr[D+X1D−X1]

= g4

4
1

(k1+k2)4
tr[(k/ 1 +m1)Γ

a(k/ 2 −m)Γa]tr[(k/ 3 +m)Γa(k/ 4 −m)Γa]

= g4

4
1

(k1+k2)4
tr[k/ 1k/ 2 −m] · (perm.k1 7→ k3 and k3 7→ k4)

= g4

4
(4k1 · k2 − 4m)× · · ·

= 4g4

(k1+k2)4
(k1 · k2 −m)(k3 · k4 −m)

We have thus that the Matrix formulation is identical to the Feynman
trace trick. Let us proceed; Let us try Xµ,α-�eld formulation in a space-
time with Gauge degrees of freedom-we can try a loop correction with
�xed masses.

20.1.3. Summary and Important Points.

• In the above, we had relations

ηabXa
−D+D−Xb

+ = ηabe
a
µe
b
νX

µ
B,+D+D−Xν

B,− = (Gµν,B+ζ̄µζνe
ik·X)Xµ

B,−D+D−XB,+

B indicating background �eld, that made it possible for us to
switch freely between the metric graviton and vielbein graviton
picture.
• We formulated the various rules in terms of traces that naturally
arise in the various pictures, e.g by matrix space-time in string
theory and Feynman technology in SYM, and coincide.
• In order to write down an amplitude correctly in H.E gravity
one has to remember the chirally split nature of amplitudes.
In particular that means that one has to follow both ends of
intermediate particles when associating propagators to them, so
that the �nal crossection becomes quadratic in that propagator,
with one contribution from each chirality, which are supposed
to be mutually independent.
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20.2. 1-Loop Amplitudes. We try 1-loop calculations. We have
learned our lesson, the stringy diagram is the square of the inavariant
matrix element, again we use our subdivision space-times of various
helicities. Thus we know what to we expect. For the above, we have,
if we only use SYM theory and the usual Feynman trace trick, that∑

|M|2
= tr[(k/ 1 −m1)Γ

µTα(k/ 2 +m2)Γ
ν

T β] 1
k4 Π1−LOOP (k)tr[(k/ 3 −m3)Γ

µTα(k/ 4 +m4)Γ
νT β]

,Π1−LOOP (k)
=
∫
d4p+d

4p−tr(T
α i
p/ +−mT

β i
k/ +−p/ +−m)tr(Tα i

p/ −−mT
β i
k/ −−p/ −−m)

=
∫
d4p+d

4p−|tr(Tα i
p/ +−mT

β i
k/ +−p/ +−m)|2

and so on, just as in the chiral splitting theorem, hence we recognize
that we are truly dealing with the same thing�up to the issue of spin
structures and moduli. So a string ampliude is just a clever way never
to have take the square explictely. We can write down the rules that
we have collected so far:
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21. Spin Structures and Moduli of Complex Strucures on

Σh=L

We have long postponed the discussion of necessary summation over
moduli of spin strucutres and complex structures, which is necssary to
ty together our previous reasoning.
Insofar as spin strucures are concerned, we notice these to be included

in the Feynman rules for intermediate loops, with usual fermionic (−1)
-factors arising from the rules, hence there is really not much we can
do there but realizing this.
The matter of complex structures, however, is more interesting, and

is thus what we shall concentrate on. Our objecive is to show, in
whatever sense it may be true, that the SYM diagrams and the string
diagrams must be equivalent( or rather, as it turns out, at least a
singular limit, but we shall go beyond this).
By theorem 1.1 we know that SYM and usual �eld theoretic in-

terpretations lead to two-dimensional conformal �eld theories. And,
as pointed out in that same theorem, this does not necessarily imply
summation over moduli. One can see that this can be deduced in some
circumstances. Assume for example that we started in a real formula-
tion of superstrings, that is what woul have resulted by the patching
construction of the two �eld theories on the two intervals in theorem
1.1, then we know by assumed consistency that we must obtain the
same result as in th complex formalism. Hence summation over mod-
uli must fall. Naively, such a reasoning would (?) perhaps su�ce, but
there are truly no guarantees w.r.t to consistency, hence we do feel
dubious about this line of reasoning, although it certainely at least
contains some grain of truth. Purely �eld theoretically we are obvi-
ously looking at inequivalent Dirac vacua of solutions in the kernel of
the Dirac operator, so one might then reason that one is to sum over
these degenerate vacua when obtaining the solutions involved. How-
ever, this again fails, since we want to precisely furthen ourselves from
such heuristic lines of reasoning, which are presicely what we try�in
whatever sense we can�to avoid in this part. Thus remains to either
to deduce a theorem our to de�ne ourselves around it.
We try a theorem, where we warn the reader not to believe that the

assumptions are realistic. We go into remedying this after the theorem.

Theorem 21.1 (Equivalence of Amplitudes Under Some Circumstances).
Assume that the string amplitudes, which are assumed to be modular
invariant, are either holomorphic in their dependence of the moduli or
e.g in the kernel of the laplacian on the moduli. Assume furthermore
that the moduli can be obtained as a quotient of an open subset of C
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w.r.t to the action of some discret group, e.g a Fuchsian group, and
that this typical fundamental region is of compact closure, for which it
su�ces that it is bounded. Then, under the assumption that the am-
plitudes are holmorphic up to and including these edges of the moduli,
the SYM and string ampliudes must coincide.

Proof. We can display the line of reasonig for a torus �rst. We have,
by modular invariance,

Ah(τ + 1) = Ah(τ),
Ah(

τ
τ+1

)

But since
Ah=L,SYM(τ0) = Ah=L,Strings(τ0)

at the relvant corner τ0 of the moduli, we have, remembering that a
constant function is also a periodic function, that

Ah,SYM(τ)− Ah,Strings(τ)
is periodic with the above modular periodicities. A holomorphism on a
compact complex manifold or a harmonic function on a compact man-
ifold is a constant, which we use, since the periodicity implies that we
have a compact scenario. Since we know that this di�rence, which now
know to be a constant, attains the value 0 at τ0, which we could extend
without troubles to the edges according to hypothesis in the theorem,
it falls that this di�erence is identically zero throughout the moduli.
But then then the amplitudes are trivially equivalent throughout the
moduli. Thus, in view of this, normalizing the modular measure with
the volume of moduli space we have

Ah,SYM =

∫
ddimsM

V ol(sM)
Ah,Strings(τ) = Ah,Strings

since the string ampliude would have to be a constant of the moduli
under such circumstances. �

The main trouble, now is that although this is certainely in one re-
gard a beautiful scenario because it would have given us exactly what
we would have opted for, and thus in e�ect �nishing the proof of the
main theorem quoted before, we cannot realistically expect that our
amplitudes are non-singular at the boundary of the moduli. Indeed,
given either the in�nities in �eld theory or the explicit representations
of modular forms in terms of Eisenstein series etc it would quite re-
markable if they were holomorphic/harmonic at the edges of the mod-
uli. That is where the trouble lies. Furthermore, to make the Lebsgue
integral over the moduli de�ned in the existance of singular behaviour
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in the moduli, we would have been forced to take a principal value over
exhaustions from the enterior of the moduli. One can however, use
the latter, to combine the both to retain another beauty�the nonsin-
gularity of string theory with world sheets as a smooth cuto�. Thus,
instead of quibbling over weather we should sum over the moduli or
not, we de�ne the SYM answer to be the moduli averaged for com-
parisions to string theory, this with the understanding that we regard
structures as any other observable that we have taken an average over,
and which may or may not be measurable. Reasoning as to the e�ect
of measurability need not concern us at all, it su�ces to know how to
compute both answeres and then state them, and then let the notion
of averaging over moduli be something settled in the laboratory, this
as it seems not deducible, and we are not, logically, in posession of a
train of though that would permit us to choose. Why choose when we
do not need to choose? That would also be a satisfactory point of view
when considering previous reasoning, that told us that we are anyway
dealing with a two-dimensional CFT as generated by the SYM's.
Finally, we must ask ourselves, if in the predicament that the struc-

ture is observable, where would most of the excitations be? The answer
to this comes from a generalization of the same mechanism that makes
long distances on a world sheet become long distances in space-time;
Bloch bounds from below and above on magnitudes of holomorphisms
on a Riemann surface. Since we know thaat a reasonable string would
have to be of proportions, say vaguely,

lTransversal to worldline
lParallell to worldline

=
lPlanck
lWorldline

∼ 10−33 ∼ 0

we also deduce that the string is very near the assumed SYM exci-
tation of the amplitude. So taking the singular SYM limit in string
theory would not be a totally unmotivated a�air.

21.1. Summary.

• We concluded that we should, in view of the above, compare
moduli averaged ampliudes when comparing with standard stringy
formulas. Furthermore the amplitudes in ASYM and Astrings are
at least to coincide at an edge of the moduli.
• In the predicament that only a small part of the moduli is ex-
cited, the part of the moduli that will be the relevant is the one
very near the SYM singular worldline like point(s) at the edge
of the moduli, this by growth estimates on holomorphisms.
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22. Strings and D± = 4 CFT, Part I: Links to 4-Dimensional
Topology and Knot Theory

This is one of two sections on strings and 4-dimensional space-time
conformal �eld theory. By consistency, in view of how we interpret the
S-matrix operations on string worldsheets as gluing and sewing con-
structions and our brief section on quantization and sewing of D-branes
we must interpret the to chirality parts of the string S-matrix as doing
topological operations on usual D± = 4, 5 space-times. This is also in
good agreement with the homotopy type, before compacti�cation, of
the space-times we are considering, which is half the real dimension
of string space-time. Thus, e.g in the 4-dimensional case, we regard
the propagators and vertices dually as topological operations in space-
time. That is, mathematically stated, we are sewing 4-folds along knots
and links in worldlines with three-dimensional space codimensional to
them. This is in good parallell with the Morse theory construction of a
foliation of space-time in instances of equal time by an appropriate ho-
momorphism from a C∗-algebra (indeed, as some reader might remark,
this would lead in the proper context to the appeareance of the Alexan-
der polynomial, and actually by the same determinant mechanism as
we foliate our space-time, albeit used in di�erent context). This be-
haviour of 4-dimensional topology has been known at least since the
mid 80's to the mid 90's, this due to developments in topological �eld
theory in interconnection with knot theory in 4-dimensional setting.
In that context, and perhaps in similar vein, some focusing on some-
thing called the fundamental group of the complement (of the knot)
gives information on the knot itself, i.e information about time gives
information about space and, in some sense, conversely. There is a
wonderful J.W.Gibbs lecture by M.F. Atiyah from 1990 on video at
some libraries in this subject, which we use as a more competent yet
not too tecnichal reference for the on wishing with a �rst encounter.
Actually, the grounds of hypermathematics( of course not �done� or
�good� or �perfect�in any sense) were developed among other things
with the hope that it may reach some aspects 3/4 dimensional topol-
ogy from the back door, namely using this typical foliated function
theoretic behavior in D = 4. In particular the S3 Poincare conjecture
felt interesting as a problem, as it seems to be at the very centre of
happenings. No signs yet of any sucess whatsoever in that direction.

22.1. Summary.
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Figure 17. Sewing along knots of D-branes to imple-
ment contractions. The above is just about the most
trivial situation one can have.

• We pointed out that, by consistency, the S-matrix must be gen-
erating topological operations on space-time, mathematically
interpretable as sewing along knots and links.
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23. The Symmetries of The Gravitational Field

As already pointed out in Part II, we observe macroscopically certain
symmetries in gravity in nature. Indeed we required as a criterion to
even discuss a quantum theory of gravity that it at least macroscopi-
cally and classically reproduce these symmetries, and we tried, with the
small resources that were to our disposition during our quantization in
part II, to touch and understand these imperative aspects of gravity,
this with varying failure an success. Our favourite scenario, with a
spin 2 �eld being responsible for gravity, wich would have engulfed the
entire dicussion and made it unnecssary, was obstructed by the fact
that we chose the vielbein and connection, functionally unrealted, as
our fundamental �elds. Let us thus reassume this discussion now that
we know (slightly) more.
As previously pointed out, the determining object for how the action

is to a�ect the free �elds is it's interaction term, then including the
sign related to the free term. In our scenario, we have for the Hilbert
Einstein term in a calculus of full densities, with pertaining strings,

LX∓ = X∗
∓Ω/ ∓X±

Ω the Riemann tensor of space-time with coe�cents in various gauge
groups. We have not called the Ω-�eld anything in particular, although
it is it is one of the two fundamental �elds of gravity. We notice, how-
ever, that it is of conformal weight 2, hence, remebering, following the
heuristics that a rotation is a rescaling with antiselfadjoint exponent,
we know that we have our candidate for such a spin 2 �eld. Rewriting
the relevant part in the above to obtain a symmetric tensor, which is
the usual case when considering such spins, we have

LX± = RicabG
ab = Ricab(Xa

1,µXb
1,νη

µν)

Hence we see that this lagrangean can really be rewitten as two compo-
nents, which although can both be set to be functionally independent
by a redefnition of the fundamental �elds, still are both symmetric spin
two �elds�just as should be. Thus our symmetries are saved.
Furthermore, in the on-shell limit at the Levi-Cevita connection our

lagrangean can be written as a function of a single symmetric �eld,
namely the metric,

LX±(Gab) = RicabG
ab

hence the symmetries at the classical macroscopical limit fall in two-
fold a manner, and are retained in the quantum theory by the �rst
argument.
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23.1. Summary.

• It was shown, on the basis of elementary arguments, that the
symmetries at the classical level of our gravities are those that
should be, and are retained in the quantum theory.
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24. Formulae For The Effective Riemann and

Stress-Energy

By the formulae of Part II, repeated in the introductury section of
Part III, we realize directly, e.g for the positive helicity Riemann,

R/ + =
∂2

∂X∗
+∂X−

lnZint[X∗
+,X−]

which becomes �quantum corrected� when other terms than only the
classical part of the interaction term are included. This should be
compared to the classical formula of Hermitean complex geometry

Ric = ∂̄∂ ln |G|
for the Ricci form on Hermitean complex manifolds. This can, actu-
ally, be obtained from the former by taking a trace tr over space-time
indices,

tr(R/ +)

= ∂µ̄∂νtr lnZint[X∗
+,X−] [Γ

µ,Γν ]
2

= {tr ln = ln det}
= ∂µ̄∂ν ln detZint[X∗

+,X−] [Γ
µ,Γν ]
2

= {G = Zint}
= Ricµ̄ν

[Γµ,Γν ]
2

i.e using Cl 7→
∧

our usual vector space isomorphism,

trR+,µ̄νθ
µ ∧ θν̄ =

Ricµ̄ν

2
θµ ∧ θν̄

just as in the de�ning relations of the complex Ricci form. We note
in the above that

< X∗
+(x′, t′)|X−(x, t) >

is a metric on a Hilbert space. Although this is implied by the above
this does not, of course, neccarily imply that we have complex mani-
folds, (albeit this is certainely so locally, see the Stein manifold discus-
sion in part II.). Rather we are dealing with a scenario of Riemannian
geometry, as we even before noted falles by the Oka-Grauert principle,
see Part I and II. Compacti�cation of our scenarios, which is allowed by
the restrainted cohomologies we like to regard, then yields the compact
models we physicists like to consider�admittedley with some impru-
dence at times. The above formula for the Riemann also gives the
stress-energy and usual real Ricci tensor by Einstein onshell-conditions
and usual bastard trace respectively. It should, however, be pointed out
that it is better conceptually to envisage the Riemann itself as a kind of
stress-energy, since the Einstein �eld equation is much less an equation
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than an identity in our Einstein-condition is no-condition quantization
of gravity, and all mass and kinematics is but geometrical in nature
in it. One also notices the above to imply a generalized Schroedinger/
Klein-Gordon equation (−∂+∂−+R/ )Z = 0, from which, e.g., the usual
Klein-Gordon equation can be drawn as consequence by taking traces,
although we shall not be going further into that particular matter in
this thesis.

24.1. Summary.

• We gave a simple formula for the Riemann, from which remain-
ing standard entities of gravity can be deduced.
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25. Noncommutative Moduli of ASD YM Vacua and

β-functions

We may be interested in the moduli of vacua of the YM theory( we
can drop the S for now) on X± and compare to it's stringy counter-
part. Again our strive to quantization that is a uni�cation of string
theory, twistor/spinor geometry and NC geometry pays o�, namely
by the anticipated mechanism�someone else has made the work for
us. According to Seiberg and Witten, String Theory and Noncommu-
tative Geometry, IASSNS-HEP-99/74, hep-th/9908142, the classical
moduli of instantons, i.e ASD U(NC) gauge connections, on X± the
one-particle space-time, i.e. equivalently in their language D3-branes,
coincides for zero B-�eld B±,µν = 0 27. For nonzero B-�eld, this is
supposed to be equivalent to NC geometry, which can according to the
same paper also be realized by usual YM with higher dimensional cor-
rection terms, with an explicit transformation from the two theories
NC YM and YM to each other. Please see section 3.1 in the above
mentioned article. Under the hypothesis that their results are accu-
rate, it would fall that also β-functions are to coincide. We apologize
again for our briefness, and that we have to refer to authors better than
ourselves, but we simply cannot expand all details, as we are delaing
with all of physics in our thesis, and thus must( and are truly glad
when we can) trust others with details we cannot see to but which we
know anyway are more than relevant.

25.1. Summary.

• Instantons onX± with a B-�eld are described by NC YM. Usual
YM with higher dimensional corrections terms is equivalent to
NC YM, with an explicit change of variables.

27Note: Of course, S. & W. do not speci�cally look on their D3-branes as space-
times of various helicities, thus this is under the assumption that no non-trivial
obstruction arises from our identi�cation of D3-branes as such in their analysis.
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26. Standard Stringy Developments

26.1. Strong/Weak Coupling Limits and Exact Results. Again,
we largely rely on authors more competent than ourselves. The weak
coupling limit is what we usually consider, when we have a meaningful
pertubation theory series, thus the references D'Hoker and Polchinski
below should do. For strong coupling limits we use the reference being
chapter 14 in Polchinski II, in particular section 14.1 on type IIB.
References on exact results are also found in Polchinski.

26.2. T,S,U Duals. Again we rely and refer to Polchinski, chapter 14.

26.3. Strings and D± = 4 CFT, Part II: Stringy Developments.
Again we rely and refer to Polchinski, this time to chapter 18, �Physics
in four dimensions�, where ideas on D± = 4 of more standard stringy
type, which are never the less relevant to this thesis, are expounded.
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27. BPS Bounds and Naked Singularities on Black

D-branes

A generalization of the usual Birkho� theorem from elementary gen-
eral relativity states that the unique axisymmetric solution of the vac-
uum Einstein �eld equation with charge Q, angular momentum L =
J = Lz and mass M in Boyer-Lindquist coordinates is given by

G− = ds2 = −(1− 2Mr
Σ

)dt2 − 4Mra sin
2(θ)
Σ

dtdφ

+(r2 + a2 + 2M2ra2sin(θ)2

Σ
)sin(θ)2dφ2 + Σ

∆
dr2 + Σdθ2

∆ = r2 − 2Mr + a2 +Q2,
Σ = r2 + a2cos(θ)2,
a = Lz

M

where the last is the angular momentum per unit mass. The event
horizon�which is a spherical surface of revolution� is located at

R− = M +
√
M2 −Q2 − a2

while the static limit� another surface of revolution of the hole� is
at

R+ = M +
√
M2 − a2cos(θ)2

The region between the static limit and the horizon is called ergosphere.
This above is illustrated in the picture below:

RS

R

R−

+

=2GM

Figure 18. A charged rotating black hole, with it's event horizon
at R− and static limit at R+. The ergosphere is the region between the
horizon and static limit.
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27.1. Naked Singularities. As is apparent from the above formula
for the event horizon that a2 + Q2 ≤ M2 must be satisi�ed in order
for it to make sense. If, on the other hand the latter is not true, then
this is interpreted as that the event horizon will disappear, leaving the
singularity in the middle of the hole visible to external observers. This
is, quite pictorially of course, called a naked singularity. Some people
feel for some metaphysical reason or the other that a naked singularity
is an impossibility, although this has actually not been proved rigor-
ously with in classical general relativity. ( This last statement is based
on the book �Blackholes: Theory and References , Lecture Notes in
Physics, Springer, 1998�, and may or may not have become inaccurate
since then.)
In string theory, a brane endowed with a vacuum Einstein metric,

in particular one belonging to a black hole, in some of it's dimensions,
is called a black brane. Consequently, one calls a D3-brane with such
a metric a black D3-brane. Because of BPS bounds on the mass of
such branes, precisely the condition of prohibition of vanishing of the
horizon falls in several places in string theory. Please see Polchinski II,
chapter 14, for further information.
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28. Hyperkähler Geometry and Cosmic Inflation

We can use our observation of the form that the metric must have
at the hyperkähler limit, please see the relevant appendix in Part IV
for notation and suchlike,

G = e−2u(ds2 + η2
1 + η2

2 + η2
3)

the volume form om the hypercomplex manifold is

θ0 ∧ θ1 ∧ θ2 ∧ θ3 = e−4u(ds ∧ η1 ∧ η2 ∧ η3)

and the natural�and preserved�volume form on Ms = Σ the spatial
slices is

e−2uη1 ∧ η2 ∧ η3

Hence from the latter we deduce that no expansion of a volume
element can be predicted, classically, for times s ∈ U,U×M ∼= X−. And
thus vanshing expansion rate of the universe as a �rst approximation
must fall.
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29. Particle Physics and The Three Theories Above

As we have previously emphasized at some point or another, our
three theories are but aspects of each other. In particular, if we look
only at interactions mediated by the the U(NC) degrees of freedom
of space-time we retain the interactions of the usual standard model
U(1) × SU(2) × SU(3) · · · . Thus all interactions of particle physics
itself are but a mere consequence of our gravity, wether we we wish
to prefer the SYM, String, or H.E. formulation does not matter, and
indeed it would be hard to seperate them from one another, as one
has to reduce the string answer to H.E. form to make it useful in the
natural setting of the physical dimension. This, that it predicts the
right kind of physics, and in the right dimension D± = 4, must be
envisaged as a strong support for our string �eld theory�or M-theory
if one so whishes. Perhaps, all the better, simply quantum theory.

30. The Systematic Classical Limit

To take the classical limit in the above model is particulary easy, this
because of the sigma model structure, which takes background paths
to interacting paths. Thus in any Fourier expansion of the �elds

X = XB︸︷︷︸
=constant

+
∑

′XA

one only has to retain the constant terms, which are the terms that
correspond to the background congruences XB , hence turning the
usual functional integral over a background subspace of the original
in�nite dimensional Hilbert space into an integral over the possible
values of these constants. For example, if we are dealing with a black
hole this would delimit the background position spectrum to be within
the Schwarzild radius RS = 2GM , while we could either take discrete
or in�nite momentum space, which gives us the usual statistical sum

Z[V ] = (

∫
dDp+

∑
)(

∫
dDx+

∑
)e−S[x,p]

If, on the other hand, we are dealing with a gas of volume V , we
may simply use the same formula for that gas. This is, in fact, usual
classical statistical mechanics, but it is remarkable that it should follow
so directly as a generality when we have the right picture. Stating it
di�erently; Hence classical thermodynamics also follows.
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Part IV: Quantum Gravity, String Field Theory
and Physics:

Appendices
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31. Introduction

The appendices in this section are of varying linkage to the topics
discussed in this thesis. In particular they contain a fairly blunt, but
non-iterative, evaluation of the general �eld theory diagram for a re-
stricted class of �eld theories where the diagram can be expressed as a
sum of higher dimensional Euler integrals in complex D. Subsequent
to this follows a formula for connections on bundles of good use in a
wide variety of cases( as it is simple and general, this becaue we in this
thesis express a metric by expressing it's ON-frame, i.e it's �vielbein�.)
and a discussion related to D-branes and strings, namely a brief and
not very detailed discussion of the singular Cauchy problem and spin
cobordisms. We also compute the mass spectrum of D3-branes for
what we assume to be a standard case. Finally maps, pertaining to
part II and Part III, illustrating the relation of the di�erent parts of
physics to each other appear.
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31.1. Appendix; Evaluating the General Quantum Field Theory

Diagram in Terms of a Closed Formula for a Restricted Class of

Theories. In this appendix we shall evaluate the general Q.F.T. diagram
for a large class of theories in a non-iterative way invented by the author
during the winter 1998. The main tool for this will be elementary pluricom-
plex/complex analysis, used to evaluate Feynman diagrams non-iteratively
for special cases when the diagram can be expressed a sum of higher dimen-
sional Euler integrals. Although we do not enter into this here, this can also
be used to provide di�erent and more consistent renormalization schemes
at high loop order. The expression of the Feynman integrals directly as a
function of complex dimension allows us to directly implement the econom-
ical method of t'Hooft-Veltman dimensional regularization. We begin with
a de�nition

De�nition 31.1. A theory is called Mickelsson if

(1) It has propagators of type
p(k1)
k2
1+m2 , p(k1) a polynomial in k1 ∈ Rn and

vertices of type g(k1, · · · , kd) a matrix-valued polynomial in attached

momenta kσ ∈ Rn.

(2) All expressions of the theory can be continued to complex space-time

dimension.

Example 31.1. QED, tensor boson gravity, and phi-fourth are Mickelsson.

Any non handed part of the standard model is also Mickelsson. GWS is

however not Mickelsson since it involves expressions with Γ5, something that

cannot be extended in a straightforward way to complex space-time dimension.

We shall now use this de�nition to prove that in Mickelsson theories there
is a renormalized formula for the arbitrary diagram. We �rst do a little
detour to provide the necessary tool;

31.1.1. A Generalized Euler Integral of Higher Complex Dimensions. We will
use the observation that the integrals of quantum �eld theory tend to be
higher dimensional analogues of Euler integrals. In particular that means
that some families of (complex) deformations of these de�nite integrals are
expressible in terms of gamma functions. We de�ne the function 28 B2 :
Cd → C

B2(ζ, d, z,∆) ≡
∫

Ed
rζ

(r2+∆2)
z
2
ddx

where r = ||(x1, x2, · · · , xd)|| is the euclidean norm function in Ed,d ∈ C,
analytically continued to Cd. In the region Re[ζ + d] > 0, Re[z − ζ − d] >
0, Re[d] > 0 this integral is a holomorphism of several complex variables and
can be expressed in terms of gamma functions, and in Cd it is a meromor-

phism expressible in ditto functions. If we let µ(Sd−1) = 2π
d
2

Γ(d/2) denote the

formal (Lebesgue)mass of the d-dimensional sphere we have

28Called beta-two.
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B2(ζ, d, z,∆)

= µ(Sd−1)B( ζ+d
2
, z−ζ−d

2
)

2∆z−ζ−d = 2π
d
2

Γ(d/2)

B( ζ+d
2
, z−ζ−d

2
)

2∆z−ζ−d

with B the ordinary beta function. In particular this implies by symmetry
on the regions we are interested in for

x = (−ix0, x1, x2, · · · , xd)

∫
Ed

xµxν

(r2+∆2)
z
2

= −gµν

d B2(2, d, z, ∆)∫
Ed

xµxνxσxρ

(r2+∆2)
z
2

= + [gµνgσρ+gµσgνρ+gµρgνσ ]
d(d+2) B2(4, d, z, ∆)

· · ·

or in full generality for non-vanishing cases of the last type with α a
multiindex, χ0 mod 2 a characteristic function of the even integers and {} the
unnormalized symmetrizer of |α| symbols,

∫
Ed

xα

(r2+∆2)
z
2

= χ0 mod 2(|α|) (−1)
|α|
2

2
|α|
2

g{α1
···gαn}(d−2)!!

(d+|α|)!! B2(|α|, d, z, ∆)

≡ B2, α(|α|, d, z, ∆), α ∈ Nd.

making integrals at arbitrary order of perturbation theory easy to evaluate
by t'Hooft-Veltman dimensional regularization.

31.1.2. The Main Theorem. We now recollect the pieces of the theorem and
give a proof.

Theorem 31.1. Assume that a theory is Mickelsson, then the general dia-

gram is expressible through one and the same closed formula.

We postpone the proof in order to give an of example that will illustrate
the vital parts of the proof and formula.

We shall evaluate the above diagram using a slightly unusual technique,

instead of using iterated integration we shall integrate directly in 2d = 8 + 2ε
dimensional momentum space. We have vertices −ieγµ, and propagators
i

k/ −m ,
−i
k2 . Let the integration over internal momenta be implicit and Tr be

the usual trace over the Dirac algebra, then with m electron mass and e < 0
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Example 31.2.

γγ

e

e

+

Π

Π

Π
2LOOP

*

*

*

2LOOP,1.

2LOOP,2.

=

Figure 19. A Feynman diagram of simple 2-loop ra-
diative corrections in QED. We evaluate the latter one,
Π∗

2LOOP,2, as our �rst illustrative example.

the fundamental charge we have have from physics kindergarten

Π∗2LOOP,2 = Tr[−ieγµ i
p/ −k/ −m − ieγν i

p/ −k/ −q/ −m + ieγµ
i

k/ +q/ −m + ieγν
i

k/ −m
−i
q2

]

= −ie4︸︷︷︸
supress

Tr[γµ p/ −k/ +m
(p−k)2−m2 γν p/ −k/ −q/ +m

(p−k−q)2−m2 γµ
k/ +q/ +m

(k+q)2−m2 γν
k/ +m
k2−m2

1
q2

]

= Feynman parameters {x, y, z, w}

=
∫

dkd

(2π)d
dqd

(2π)d

∫
[0,1]4=In dxdydzdw︸ ︷︷ ︸

=dζn︸ ︷︷ ︸
supress

Tr[ γµ(p/ −k/ +m)γν(p/ −k/ −q/ +m)γµ(k/ +q/ +m)γν(k/ +m)
(x((p−k)2−m2)+(y−x)((p−k−q)2−m2)+(z−y)((k+q)2−m2)+(w−z)(k2−m2)+(1−w)q2)5

]

We now combine the sum of denominators-it is seen to be a quadric of

momenta, thus elementary algebra gives that this quadric can be written as
29 ||Λ−1(k⊕q)+T ||2−∆2 with Λ, T a Feynman parameter dependent matrix

and || · || the norm induced by the metric h = g1 ⊕ g2, gi usual Minkowski

space metrics. Hence a simple change of variables gives, setting t = Λ−1(k⊕

29Orthogonal diagonalization of the quadric and a little algebra su�ces to show
this for example.
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q)|k0 7→−ik4,q0 7→−iq4 together with setting the numerator to
∑

Aαtα
30 that we

can �nally see the use of the previous section;

Π∗2LOOP,2 = (−i)2det(Λ)
P
Aαtα

(t2+∆2)

= (−i)2det(Λ)
∑

AαB2, α(ζ, d, z,Λ)|ζ:=|α|, d:=2d=8+2ε, z=10

= (−i)2 −ie
4

(2π)d

∫
In det(Λ)

∑
0≤|α|≤4

[Aαχ0 mod 2(|α|) (−1)
|α|
2

2
|α|
2

g{α1
···gαn}(d−2)!!

(d+|α|)!! B2(ζ, d, z,Λ)]|ζ:=|α|, d:=2d=8+2ε, z=10

In the above A must be transformed covariantly with Λ, this is something
that we assume from now on. The calculation of the Aαin the example
above can be made and consits of some tedious algebra 31. The main point
is that we now have an answer- that was reached without intermediate use
of counterterms. Also, the procedure outlined has great generality, for we
can evaluate the Laurent series expansion of B2 once and for all for all cases.
Thus t'Hooft-Veltman regularization, the above tricks and the formula for
the above Euler integrals will give us our answers.

Let us give the general formula for the Laurent expansion. It might not be
understandable why we choose to give such a formula, but we will need the
exhaustiveness to achieve generality. In even background dimension d0 ∈ N
the following case covers the non-trivial cases I have seen so far 32

1
(2π)dB2(ζ, d, z,∆)

= 1
4π∆z−ζ−d0

Γ(
d0+ζ

2
)

Γ(
d0
2

)

(−1)
|z−d0−ζ|

2

|z−d0−ζ|
2

[−2
ε − [ln(∆2

4π )− Γ′(
d0
2

)

Γ(
d0
2

)
+ Γ′(

ζ+d0
2

)

Γ(
ζ+d0

2
)

+ (−1)
|z−d0−ζ|

2

|z−d0−ζ|
2

(γ −
∑

1≤n≤ |z−d0−ζ|
2

, n∈Z
1
n)] + O(ε)] ,

z−d0−ζ
2 ∈ Z− ∪ {0}, ζ+d02 ∈ Z+

or in still greater generality

30The matrices Aα depend on dimension in the general case, although they do
not do so in this speci�c case. Expressions in momenta before transformation must
be expressed in the new variables t, so theis induces a covariant transformation of
the matrices Aα by Λ, something that is supressed later.

31The main impetus for inventing my function was to have some device for
writing down the regularized result for any Feynman integral at any order of per-
turbation theory. Of course there still remains the evaluation of the integrals over
Feynman parameters, which is best made numerically. The above procedure still
holds at high loop, and there it can be advisable to also handle the calculation of
Λ and the Dirac algebra on computer too.

32However there are cases z−d−ζ ≤ 0 where regularization is not needed. Direct
evaluation in terms of gamma functions is then possible according to the previous
section, so those cases are trivial in some sense.
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1
(2π)dB2, α(ζ, d, z,∆)

= 1
(4π)d0/2∆z−ζ−d0

Γ(
d0+ζ

2
)

Γ(
d0
2

)Γ( z
2
)

(−1)
|z−d0−ζ|

2

|z−d0−ζ|
2

!
χ0 mod 2(|α|) (−1)

|α|
2

2
|α|
2

g{α1
···gαn}(d0−2)!!

(d0+|α|)!!

[−2
ε − [ln(∆2

4π )− Γ′(
d0
2

)

Γ(
d0
2

)
+ Γ′(

ζ+d0
2

)

Γ(
ζ+d0

2
)

+
|z−d0−ζ|

2
!

(−1)
|z−d0−ζ|

2

(γ −
∑

1≤n≤ |z−d0−ζ|
2

, n∈Z
1
n)− 2∂d(d−2)!!

(d−2)!! |d=d0 + 2∂d(d+|α|)!!
(d+|α|)!! |d=d0 ]

+O(ε)] ,
z−d0−ζ

2 ∈ Z− ∪ {0}, ζ+d02 ∈ Z+ .

We are �nally ready to make the proof. Bearing in mind that the formulas
of the Euler integral section apply to a wide variety of cases we shall anyway
restrict ourselves to the physical case and only consider even d0 ∈ N for
simplicity.

Proof. The proof is simple and uses canonical components. First we use
Feynman parameters then we make a change of variables in the dl-dimensional
integration space, d ∈ C being the space-time dimension and l the loop order.

Say we are given an arbitrary Mickelsson diagram( The name for a Feyn-
man diagram in an arbitrary Mickelsson theory). We recall the Feynman
parameter formula

1
Dβ

=
1

B(β)

∫
In=I|β|

δ(
∑

ζi − 1)ζβ−n

(
∑

ζiDi)β

β a multiindex 33, D the denominators. The measure used is dζn. It all
now all falls down to using the above formula, Wick rotate, then make a
change of variables and express the end result as a superposition of relevant
Laurent series. Let us call this general diagram M, p the degree of the
polynomial in the numerator and set dl = d0l + ε, ε ∈ C, |ε| > 0 small
enough.

Example 31.3. In QED dl is the dimension times loop order, in dimension

6 at loop order 4 we have dl = 6 · 4 = 24.
Then we have

33The generalization of the beta B function used above is de�ned by B(β) =
Γ(β1)Γ(β2)···Γ(β|n|)

Γ(|β|) = Γ(β1)Γ(β2)···Γ(β|n|)

Γ(
P

βi)
.
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M
= (−i)ldet(Λ)

∑
0≤|α|≤p[ [Aα|d=d0 + ∂dA

α|d=d0lε + O(ε2)]
1

(2π)dlB2, α(α, dl, z,∆)]
= (−i)ldet(Λ)

∑
0≤|α|≤p [ [Aα|d=d0l + ∂dA

α|d=d0lε + O(ε2)]
[χC−0(z − d0l − ζ)

1

(4π)
d0
2 Γ( z

2
)∆z−ζ−d0l

Γ(
d0l+ζ

2
)

Γ(
d0l
2

)

(−1)
|z−d0l−ζ|

2

|z−d0l−ζ|
2

!
χ0 mod 2(|α|) (−1)

|α|
2

2
|α|
2

g{α1
···gαn}(d0l−2)!!

(d0l+|α|−2)!!

[−2
ε − [ln(∆2

4π )− Γ′(
d0l
2

)

Γ(
d0l
2

)
+ Γ′(

ζ+d0l
2

)

Γ(
ζ+d0l

2
)

+
|z−d0l−ζ|

2
!

(−1)
|z−d0l−ζ|

2

(γ −
∑

1≤n≤ |z−d0l−ζ|
2

, n∈Z
1
n)− 2∂d(d−2)!!

(d−2)!! |d=d0l + 2∂d(d+|α|−2)!!
(d+|α|−2)!! |d=d0l] ]

+ χC+(z − d0l − ζ)
1

(2π)d0ll
2πd0l

Γ(
d0l
2

)

Γ(
|α|+d0l

2
)Γ(

z−ζ−d0l
2

)

2∆z−d0ll−ζΓ( z
2
)

+ O(ε) ],

= (−i)ldet(Λ)
∑

0≤|α|≤p [
[χC−0(z − d0l − ζ) 1

(4π)
d0
2 Γ( z

2
)∆z−ζ−d0l

Γ(
d0l+ζ

2
)

Γ(
d0l
2

)

(−1)
|z−d0l−ζ|

2

|z−d0l−ζ|
2

!
χ0 mod 2(|α|) (−1)

|α|
2

2
|α|
2

g{α1
···gαn}(d0l−2)!!

(d0l+|α|−2)!!

[
−2Aα|d=d0l

ε −Aα|d=d0l[ln(∆2

4π )− Γ′(
d0l
2

)

Γ(
d0l
2

)

+
Γ′(

ζ+d0l
2

)

Γ(
ζ+d0l

2
)

+
|z−d0l−ζ|

2
!

(−1)
|z−d0l−ζ|

2

(γ −
∑

1≤n≤ |z−d0l−ζ|
2

, n∈Z
1
n)

−2∂d(d−2)!!
(d−2)!! |d=d0l + 2∂d(d+|α|−2)!!

(d+|α|−2)!! |d=d0l]
−2∂dA

α|d=d0l ]

+ χC+(z − d0l − ζ) 1
(2π)d0ll

2πd0l

Γ(
d0l
2

)

Γ(
|α|+d0l

2
)Γ(

z−ζ−d0l
2

)

2∆z−d0ll−ζΓ( z
2
)

χ0 mod 2(|α|) (−1)
|α|
2

2
|α|
2

g{α1
···gαn}(d0l−2)!!

(d0l+|α|−2)!! + O(ε) ],
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Where C+ are the complex numbers of positive real part and C−0 the
complement in C. Thus desupressing the integral over Feynman parameters
we get for d0l ≥ 2

M = 1
B(β)

∫
In=I|β| δ(

∑
ζi − 1)ζβ−n(−i)ldet(Λ)

∑
0≤|α|≤p [

[χC−0(z − d0l − ζ) 1

(4π)
d0
2 Γ( z

2
)∆z−ζ−d0l

Γ(
d0l+ζ

2
)

Γ(
d0l
2

)

|z−d0l−ζ|
2

!

(−1)
|z−d0l−ζ|

2

χ0 mod 2(|α|) (−1)
|α|
2

2
|α|
2

g{α1
···gαn}(d0l−2)!!

(d0l+|α|)!!

[−2Aα|d=d0l

ε −Aα|d=d0l[ln(∆2

4π )− Γ′(
d0l
2

)

Γ(
d0l
2

)
+ Γ′(

ζ+d0l
2

)

Γ(
ζ+d0l

2
)

+ (−1)
|z−d0l−ζ|

2

|z−d0l−ζ|
2

(γ −
∑

1≤n≤ |z−d0l−ζ|
2

, n∈Z
1
n)− 2∂d(d−2)!!

(d−2)!! |d=d0l + 2∂d(d+|α|)!!
(d+|α|)!! |d=d0l]− 2∂dA

α|d=d0l ]

+ χC+(z − d0l − ζ) 1
(2π)d0l

2πd0l

Γ(
d0l
2

)

Γ(
|α|+d0l

2
)Γ(

z−ζ−d0l
2

)

2∆z−d0l−ζΓ( z
2
)

χ0 mod 2(|α|)×

(−1)
|α|
2

2
|α|
2

g{α1
···gαn}(d0l−2)!!

(d0l+|α|)!! + O(ε) ],

the regularized formula for the general �eld theory diagram in the Mick-
elsson class of theories. Subtracting at a suitable subtraction point, or em-
ploying minimal subtraction, i.e projecting away the purely meromorphic
germ at the origin in complex ε-space, we have our renormalized diagram.
Some remarks are to be done: This evaluation of the general diagram for
this class of theories may at �rst hand seem sensitive to the order of in-
tegration over loop dimensions, however this problem is taken care of by
regarding the whole integral as a meromorphism over several variables. Slic-
ing up the integration region as a hypercube, letting the side of the cube
go to in�nity and integrating iteratively over cubes pertaining to the vari-
ous loop momenta we note that in euclidean time we have a holomorphism
in�tisimally transversally by Paley-Wieners theorem from several complex
variables. Furthermore the integral is invariant under order of integration
by Funbini-Tonellis theorem from integration theory for each succesive cube
in the limit taken.

�
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32. Appendix; A formula for Connections on Some Bundles

32.1. Introduction. We will begin with the mathematics and then proceed
to the physics. As for the physics this formula is of practical consequences,
among other things it makes life more pleasing when calculating connections
in some instances of general relativity, in particular for the quite common
special case when the metric is diagonal.

32.2. Results and Proofs. Let the tangent bundle (E, π, M, F,G, {Ui, φi})
be given, E total space, π the projection, M the base space, F ∼= Kn the
�bre for K = R or K = C, G = O(n, m,K) in pseudo-orthogonal case
or U(n, m) in pseudo-unitary case, {Ui, φ} a open cover of M with the be-
longing local trivializations φi on E. Let ∗ be the dual map over G (i.e
transpose for orthogonal case and hermitian adjoint for unitary case) and
it's associated left module F. Let Sg be the antisymmetrizing projection
from F ⊗ F ∗ to g with explicit realization over the 'de�ning' representa-
tion of G by Sg(Xijeij) = Xijeij ± Xijeji in pseudo-orthogonal case and
Sg(Xijeij) = Xijeij ± X̄ijeji where eij ∈ M(n + m, C),M(n + m, C) the
vector space of all (n + m) × (n + m) matrices with it's associated mul-
tiplication, which is naturally associated to the de�ning representation of
these classical groups. 34. Then I claim, �rstly for these tangent bundles
with vector space �ber equipped with an appropriate quadratic form, that
the torsion-less Cartan stucture equation for the connection one-form on E,
dθ = −ω∧θ, θ ∈ Λ(E,K)⊗K(n+m) being the local ON-vielbein correspond-
ing to the �bre metric h = hµνdxµ⊗dxν , {xσ} local coordinates on the �bre
with explicit coordinate representaion

θ =


(h00)

1
2 dx0

(h11)
1
2 dx1

...

(hn+m)
1
2 dxn+m


in the diagonal case, which we can take to simplify computations in the
following without enforcing any relevant constraint as we prove coordinate
freedom later on, 35 has solution

ω|TM = Sg(eθ∗)

34Einstein sums apply only form now on
35The formula given is also true in the non-diagonal metric case, however we will

consider diagonal metrics �rst for simplicty. Two proofs for the general case are
below.
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where e ∈ der(T ⊗K(n+m)),T denoting the tensor algebra on F, is a deriva-
tion associated to the repére vector

e =


(h00)−

1
2 ∂0

(h11)−
1
2 ∂1

...

(hn+m)−
1
2 ∂n+m


36whose action is locally de�ned on individual Fibre tensors t ∈ T by

et

= e(tijk..σ,ρ...P (dxρ ⊗ .....∂σ..))
= e(tijk..σ,ρ...t

ijk..
σ,ρ...)P (dxρ ⊗ .....∂σ..)

= Le(tijk..σ,ρ...)P (dxρ ⊗ .....∂σ..)

P some permutation of tensor bases, L denoting partial di�rentiation on

smooth coe�cients tijk..σ,ρ... ∈ C∞(F,K). Let us de�ne an 'abstract' connection
ω ∈ g⊗ T ∗P on P the frame bundle corresponding to E to be

• 1) A unique smooth separation TqP = HqP ⊕ VqP satisfying
• 2) HugP = R ∗g HuP , u ∈ P ,R∗

g denoting the right translation on
TP induced by g ∈ G.

where one de�nes VuP = Ran(#),# : g → VuP ⊂ TuP as the isomorphism
of vector spaces pointwisley de�ned by A#f(u) = d

dtf(uetA)|t=0 for any
f : P → R nondegenerate at u and the horizontal subspace HuP as the
complement in TuP of VuP . My mathematical claims are then

• That the formula given is the solution to Cartan's torsion-less stuc-
ture equation for the structure groups mentioned.
• That this quantity transforms as a connection with respect to ad-
missible transition functions tij ∈ G where tij is such that φj(p, f) =
φi(p, tijf).
• That we are actually dealing with an 'abstract' connection in the
sense above.

Before proceeding we warn the reader of not forgetting that to get ω|T ∗E *
must operate on ω|TE in explicit computations. We begin with a lemma

Lemma 32.1. Let A ∈ G or G = O(n, m,K) or G = U(n, m, C), then for

B ∈M(n, C). Then

Sg(AdAB) = AdASg(B)

i.e the symmetrizing and adjoint action commute,[Sg, Ad] = 0, where AdAB =
A−1BA.

36In (pseudo)unitary cases there should be a complex conjugation here because
of the hermitian metric.
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Proof. Set A to be eij times some (complex) constant. Then by A−1 = A∗

we get

L.S = Sg(A−1BA) = A−1BA± (A−1BA)∗

= A−1BA±A∗B∗A−1∗ = A−1(B ±B∗)A = A−1Sg(B)A = R.S

and by linearity of the adjoint action the asserion now follows. �

Let us de�ne Sg(d) = d, d denoting exterior di�rentiation on the �bre.
The wisdom of this choice can be con�rmed with an elementary computaion
left to the reader. Then we get the theorem

Theorem 32.1. Let ω = Sg(eθ∗). Then ω transforms as a connection under

admissible transformations t ∈ C∞(E,G) .

Proof. Since t−1 = t∗ we get

L.S = Sg(e′θ′∗)
= Sg((t−1e)(t−1θ)∗) = Sg(e′θ′∗)
= Sg(t−1e(θ∗t)) = Sg(t−1(eθ∗)t) + t−1(θ∗e)t))
= Sg(t−1(eθ∗)t + t−1dt)
= t−1(Sg(eθ∗) + d)t = t−1(d + ω)t = Adt(d + ω) = R.S

where we used the previous lemma and the fact that e was a derivation, i.e
linear with a Leibniz rule. �

Corollary 32.1. ω is a connection.

Proof. To satisfy criterion 1) de�ne HuP = Ker(ω), since ω is smooth that
takes care of that criterion by letting VuP be the complement. As for cri-
terion 2), letting X ∈ HugP we get ω(R∗gX) = R∗

gω(X) = Adg(ω(X)) = 0
where we noted theorem 1.1 and the concequence

ω′ = g−1ωg + g−1dg︸ ︷︷ ︸
=0

= Adg(ω).

�

Theorem 32.2. ω satis�es the structure equation −dθ = ω ∧ θ on T ∗M .

Proof. For illustrative purposes we shall �rst work with a diagonal metric
and O(m) case. Then (No Einstein over i)

dθi = dh
1
2
iidxi = ∂σh

1
2
iidxσ ∧ dxi

= −h
− 1

2
σσ ∂σh

1
2
iidxi ∧ θσ = −(eθ∗)σi dxi ∧ θσ = ((eθ∗)∗)ijdxi ∧ θσ = −ωiσ ∧ θσ

gives when taking the symmetrization conditions into consideration ω|F =
Sg((eθ∗)∗) = (Sg(eθ∗))∗ just as it should be. We can now take the general
case

ω|F ∧ θ = (Sg(eθ∗))∗ ∧ θ = e(θ) ∧ θ + (eθ)∗ ∧ θ = [eiθi ∧ θi] + dθ = dθ

in the above bracets denote a vector indexed by i. The elements in that
vector vanish since squares of one-forms are null. �
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.

Example 32.1. On S2 with polar coordinates and the usual metric

g = dθ ⊗ dθ + sin(θ)2dφ⊗ dφ

we have

ω = Sg(eθ∗) = −Sg

(
eθ̂
eφ̂

)(
θθ̂ θφ̂

)
= −Sg

(
∂θ

1
sin(θ)∂φ

)(
dθ sin(θ)dφ

)
= −Sso(2)

(
0 −cos(θ)dφ
0 0

)
=
(

0 −cos(θ)dφ
cos(θ)dφ 0

)
Calculations in higher dimension proceed in exactly equivalent manner,

and are drastically simpli�ed when the metric is already given in diagonal

form by expressing it's ON basis�this is assumed in the projection onto the

appopriate isometry subalgebra of the automorphism algebra of the relevant

vector bundle �ber, and is a common enough case in physics.v

294



33. D3-branes/One-particle Space-times(Worldons) in General

With good approximation at relevant backgrounds, X± are hyperkähler,
that is, they are hypercomplex space-times with their Obata connection37

preserving a metric in the conformal class. If one lets the measured helicity
space-time be embedded in the stringy space-time, something that can al-
ways be done by a special case of Whitney's theorem, we can represent the
remaining by a contractible set, this to have homotopy equivalent topology
inducing an isomorphism of the sheaf cohomological theories of the corre-
sponding background partial di�erential operators (i.e BRST operators), e.g
free operators in the simplest case on R4, which we often choose to com-
pactify. One can also work with two copies of the same space-time, as we
chose to do in part III as opposed to part II, as long as one remembers
to take this into account the physical results should not di�er�or at least
have not done so so far in this thesis. Several particles, say N , are then
supposed to correspond to a stack of N standard copies of the appropriate
space-time background, which works a little bit as a common zero level or
reference point for the various space-times. Here is a simple explanation for
the reader who wishes to understand this; Think about usual electrons in
space-time, they are but �elds; they can have di�erent �eld values, for they
correspond to di�erent particles with roughly independent physics, this by
cluster decomposition of the S-matrix. One models this by having N di�er-
ent position con�guration spaces, or space-times in more common language.
This does not necessarily mean that one truly does have several space-times
but that is anyway the way we model it. So we have several space-times
because we want to allow for electrons with di�erent �eld values. Now, we
all agree that vielbeins and connections are but usual �elds, and we can, for
the line of reasoning, say we agree that we can interpret these �elds as parti-
cles. The values of connections and vielbeins on a space-time can be�should
be� di�erent, because after all, they are but particle way functions. Since
a space-time is minimally and uniquely determined by it's smooth topology,
it's connection and it's ON frame(or metric, if one insists on being impracti-
cal), and both the vielbein and connection are but usual particles, we deduce
that we must be having N di�erent copies of the smooth topology but with
di�erent connections and vielbeins in order to model the physics. So we
have a heap of space-times, because of independent geometry,� as many
as the number of particles�but with the same position spectrum. String
theory, i.e the addition of dimensions is to drop the last restraint. The stack
of branes, then, is what is called multiparticle space-time. Let us see how
a one-particle space-time looks. According to us�and as has been checked
indirectly in the mathematical literature for one very simple but relevant
case� we conjecture that the spatial sets in a brane can, after continuation

37This is the name of a torsion-less connection that preserves the hypercomplex
structures on a hypercomplex space-time.
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to Eucidean metric, be identi�ed with the level sets of the determinant ho-
momorphism det(1 +O), O ∈ A a C∗ algebra. One can easily intutively see
how that comes about, for if we make the analytic continuation of the usual
expressions to imaginary time β it is easy to see that the the Hamiltonian
H does not generate unitary isometries of the relevant Hilbert spaces but,
e.g instead generates a scaling of determinants by the possibly ill-de�ned
determinant

det(e−2Hβ)

In the standard case, O = Qint/Q, Q the BRST charge operator, e.g the
Klein-Gordon operator Q = −k2 + m2. In the mathematical literaure, see
Hitchin[1] in the references, this �gured and was proved two years ago in
his paper �Hypercomplex Manifolds and the Space of Framings�, who was
simply considering the special case of harmonic functions as generating spa-
tial sets and time in a hypercomplex space, something that corresponds to
Weyl(massless) fermions after reduction to halfdensities in the SYM, and the
case for general m seems thus to be suggested, by �translation invariance�
of the physical laws, as it were, along the mass scale, if we only remember
that we can write solutions of partial di�erential equations by using partition
functions and pertaining determinants.

It would be interesting to know the behaviour of such possibly non-
hyperkahler space-times, might they be the non-vacuum states one per-
cieves/believes them to be, and if so, how many of them are tachyons? Such
answers could give further checks that truly everything �ts in the grand hy-
pothesis of this thesis�something that we can of course not exhaustively
check ourselves as it involves all of physics.

Traditionally the �spectral varieties� det(1 + O) = c are called isospectral
sets for �nite dimensional operators in the context of integrable systems (See
Hitichin[2]). In the in�nite dimensional case, it can be hard to establish any
meaning to such an equation, but since we are any way wanting information
on a particular space-time this is remidied by observing the level sets of the
determinant homomorphism acting as background partition functions.

Let us return and sum up. We draw a picture in string space-time to make
it clear;

We sum up our thoughts on the determinant homomorphism by

Conjecture 33.1 (NC-Geometry/ D-brane correspondence, �Determinant
Homomorphism Conjecture�). Let det : A 7→ C be the determinant homo-

morphism from an appropriate C∗ algebra to an appropriate �eld, here taken

as C = RC. Then, after continuation to the Euclidean region so that the

unitary action of the Hamiltonian is a scaling of the determinant instead

of preserving it, we have our spatial sets induced by varieties of the form

det(O) = c, c ∈ C, where it is understood that we act by the determinant on

appropriate initial value data on a spatial slice at some a priori given instant

on a D-brane.
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X+

X−

Wilson loops

String

Hyperkähler, on−shell

Figure 20. X± is a level surface of mass( i.e a foliation by the Ricci
instead of the dilaton) in Kaluza-Klein space-time, X± = U±×Σ±, Σ± a
level surface of time, and det(1+O) gives the branes at various instances.
The above corresponds to how a Wilson loop of open strings would look
like. A usual free propagating string in gravity would like the opposite,
with the end points in the various space-times joining, being able to
propagate arbitrarily in either space-time. Hence the closed dimension
and open dimension would reverse in the above picture.

and this gives a natural interconnection to Morse theory that will, up to
the following mindmaps and �owcharts, end our thesis.

Remark: For the massless classical case of a scalar with only a Laplacian
as charge operator� which is actually precisely what our gravitons and dila-
tons correspond to in this thesis�this has already been proven (by Hitchin
in the references). Otherwise the question is open. Again we emphasize that
the above includes illde�ned objects (the determinants) whose cure may well
prove to have some interesting e�ects on the evolutions of branes. As an ex-
ample of the above scaling behaviour, theta functions are quasi-periodic, and
they are partition functions on a cobordism in the Euclidean plane belonging
to a parabolic di�erential equation.
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34. Summary of Thesis
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Remark on previous page; Our hypothesis consists of the interrelations
illustrated in the mindmap above, and the three theories in our hypothesis
have been denoted by I, II and III.

With ε the modulus of the imaginary part, limdirε→0 X± = Y = Re(X), D(X±) =
4. X± the holomorphic and antiholomophic part of a complex Stein manifold
of complex dimension 4.

Fundamental Fields: Φ super Dirac �eld, ω a spin connection with gauge
degrees of freedom, so ω := ω +A0 +A1 + · · · , Ai ∈ {U(NC), SU(NC), · · · }-
connections. A 1-admissible theory.

LSYM,Dirac = Φ̄∓D∓Φ±,

Form Xa from ΦA

⇐
⇒II: H.E. on X±, D(X±) = 4

Fundamental Fields: Xa
± a supervector in the ON-frame, Xa

±,1 = ea±,µdxµ± =
ea±,µθ

µ
± a vielbein, Xa

±,0 = Xa
± a vector which gives an embedding via expo-

nentiation. ω± a connection with extra gauge degrees of freedom.

LH.E. = ∗(D∓X∗±D±X∓), Hilbert− Einstein

Stack X+ onto X−, include a worldsheet to be able to deform mass states.

X = X
(5)
+ ×X

(5)
− = Σ×X+ ×X−, X

(5)
± now each include one degree of

freedom more than usual, as well as gauge degrees of freedom. The extra
degree of freedom is by e�ectively killed by world sheet on-shell( BRST)

conditions.

⇐
⇒III: Strings on X, D(X) = 10

Fundamental Fields: Xa a NC supervector with gauge degrees of freedom.
This is also a 2-admissible theory.

L = ∗(X∗D2X), STRING/MATRIX − THEORY

This is a theory with total space a Stein in�tisimal transversal complex-
i�cation of X4/5, D(X) = 5/4 complex dimnsion, Mathematically a coho-
mological problem(such as �nding solutions to �eld equations with some
symmetry) is then by the Stein property38 a problem on a real analytic 5 or
4-manifold, so ten dimensional Matrix-theory is equivalent to 5-dimensional
Gauge Theory with no mass �xed or alternatively �xed mass, which is the
same as prescribing the curvature Ricci scalar , and then do 4-dimensional
gauge-theory. In D = 10 String Theory we �x the dimension and kill the

38See the Oka-Grauer Principle in the mathematical part. Incidentally this prop-
erty also proves crossing symmetry, as well as well de�ned Wick rotations since a
Stein manifold is necessaraly pseudoconvex.
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o�-shell dimensions so that this becomes the same as e�ective dimenion
Deffective = 8 and this is then equivalent to the physics of Gauge Theory in
X± with D(X±) = 4.
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A Picture Series Of The Above;
I: SYM on Y±(X±)

π

π

Y,  SYM

Y,  SYM

D=4

D=4

Propagator

String

Propagator

X

D=10
Place on string where x  and x  coincide,
and consequently opposite Chan−Paton factors meet 
each other.

Spot where x  and   x meet at former point. Called the base point
in Part II. Has no relevance whatsoever on the string, this by translation invariance

Gives D=10 space−time with Chan−Paton factorsExample: Free string

X, H.E., D=4

I

II

III

+

−

+

−

and noncommutativity.

+

−

  on the closed field theory on the circle.
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Regarding the previous page; The points I,II and III above are the
vartious steps and pertaining theories on the previous page. Both the
4 dimensional space-time and the 10 dimensional space-times above
are noncommutative, and are in particular hyperkähler for a variety of
more or less sensible backgrounds.
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Our Hypothesis Features;
(1) Branes, strings, SYM, H.E. gravity, in particular string

theory in D = 10 as the inevitable consequence of �eld
theory in D± = 4.

(2) Spinors(Twistors)
(3) NC geometry, both in Connes sense and in NC space-

time meaning. For the former case, the determinant
homomorphism conjecture provided the link to NC al-
gebraic geometry.

(4) Toplogical �uctuations of arbitrary dimension, i.e. N-
admissibility and generalized SUSY.

(5) The various dimensions as results of Weyl invariance,
which makes theories in such dimensions more proba-
ble (they would, e.g., tend to �ow to such dimensions
when being in other dimensions). We have our stringy
results directly in the physical dimension D± = 4 as
a consequence of this, and we called the correctly re-
duced string theory in D± = 4 H.E. gravity.

It is hopefully visible that these interlock most naturally and
are indispensible and common to each other.
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Epilogue and Retrospect





35. A Retrospect to the History of Dual Models

In our thesis, we derived string theory as the inevitable
consequence of our wish to deal with space-time entities in
quantum gravity, which are full densities rather than half.
Thus, in e�ect, it was the probability interpretation of quan-
tum mechanics that implied string theory. We did this by
using the path formulation of quantum �eld theory, applied
in a novel way, but still within the usual rules or quantum
mechanics, thus yielding a derivation of string theory out
of axiomatized principles. This gives space-time a noncom-
mutative structure, with e.g. U(N) degrees of freedom on
space-time vectors, and a natural interpretation of Chan-
Paton factors in terms of quarks on the ends of strings. But
it also gave the underlying mechanism, namely the probabil-
ity interpretation, to the existence of string theory, as well
as why it takes the form it does. As examples of how close
this touches and founds the early ideas that founded string
theory, that were based on heuristics and not direct and in-
evitable deduction as in this thesis, we quote directly GSW,
Part I, on two places with �gures.
Thus it is hopefully seen that we truly have come up with

the raison d'être of string theory, which is as fundamental as
quantum mechanics itself.

307



Figure 21. This is a �gure on page 52, Part I of GSW.
It has text below it as follows; �Meson scattering in the
large-n limit of QCD is described by `planar' Feynman
diagrams with quarks on the boundary. Describing the
�avor state of a meson by the �avor matrix λi, the pla-
nar amplitude of M mesons in the cyclic order 123...M
involves a contraction of each quark with the antiquark
of the adjoining meson, and so involves the Chan-Paton
factor tr(λ1λ2 · · ·λM).�
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Figure 22. The above is the element (c) of a picture se-
ries (a)-(d) in GSW Part I, page 48, with a �gure text as
follows; �We can suppose that an oriented open string has
a `quark' at one end and an `antiquark' at the other end,
as sketched in (a). They can be assumed to transform,
respectively, in the n and n̄ representation of a U(n)
symmetry group. When open strings join, the quark and
antiquark charges are required to match as in (b). The
group-theory factor associated with general planar open-
string amplitude, sketched in (c), is then tr(λ1λ2 · · ·λM).
In a more general string diagram, as in (d), a similar
group theory factor is assigned to each boundary com-
ponent.�
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Epilogue

We apologize for our deep shortcomings, which we believe
that anyone willing to take on a project of this kind must,
in the end, face, but never the less may have handled bet-
ter than us. We also emphasize that we have many times
touched things that have been done by other authors, and
that we have no greater part in many of the parts of physics
we have tried to join together. To clarify; If physics was a
vase, we claim to have invented the glue and su�ciently many
pieces of the remainder of the porcelain to put together the
parts already known to us, and certainly not have invented
the greater part of the large pieces of our precious shattered
porcelain, thus feeling very obliged, since the main part of
the porcelain is not our creation. In this last vein we feel sin-
cere gratitude and admiration in view of the contributions
of J.Polchinski( D-branes), J. Maldacena( AdS-CFT corre-
spondence), Hitchin( The article on hypercomplex framings
and harmonic level sets, which drew our attention to a refor-
mulation in the sense of a determinant homomorphism con-
jecture) and �nally A. Connes (Noncommutative Algebraic
Geometry). We also acknowledge the strong incentive that
the dual work of A.Polyakov (Stochastic �ows via CFT) and
R. Jackiw (Stochastic �ows via Y.M.) as a motivation for be-
lieving in early stages in the hypothesis presented. None of
the hypothesis set forth could have been done, in particular
neither the two extra quantizations of gravity presented nor
the uni�cation of physics, were it not for their brave contri-
butions to physics and mathematics.
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36. Errata

We set
D+ = D/ C

+,

so the Dirac operator we use is the holomorphic complexi�ed
version in complex dimension 4 or 5. This is to among other
things make the reasoning about Stein manifolds and QFT
in half the dimension trivial via the Oka-Grauert Principle.

37. Remark

The equivalence

(

∫
ρ(m2

1, · · · ,m2
n) +

∑
m

)|Dirac− Y ang −Mills,D = 4|2

= (

∫
ρ(m2

1, · · · ,m2
n) +

∑
)Gravity, (D = 4)

= Re(SteinGravity, (D = 8))

= (

∫
dnm+dm

n
−ρ(m

2
1, · · · ,m2

n) +
∑
m

)Mstrings,Deff=8≡D=10

, can be seen in the Feynman rules of, e.g, QED. Indeed we
have u(k) ⊗ ū(k) = k/ −m, and eµe

∗
ν = gµν, so the square

of the �eld/variable pieces give the correct new dynamical
variables/�elds in the tensored theory which is gravity. Ob-
viously we see that we have two �elds or variables, [X± =
k/ ± ±m = 1

2πi

∫
γ ∂±E

µ
±Γµ,± ±m = 1

2πi

∫
γ ∂±ψ̄Γµ

±ψΓµ,± ±m]

the asymptotic worldon at in�nity and [g = (gµν)] the met-
ric in our gravity. Please note that the e.g the worldon has
gauge theory algebra degrees of freedom as well, which are
exactly the same as including Chan-Paton rules or stacking
D-branes.
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