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GRAVITY AND MATRIX BRANES

E.B. TORBRAND DHRIF

Abstract. This is a article that discusses how a gravity model pre-
viously proposed gives a M(atrix) model for branes. I also discuss the
issue of Stein manifolds in physics.
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1. The Model We Begin With

The model we begin with is, without ghost terms, symmetry braking terms
and no e�ective action terms;

Ltotal = |D/ θ|2 + ψ̄(iD/ −m)ψ +
|F +R|2

4
where the pure gravity lagrangean is

Lgravity = |D/ θ|2.
θ is the vielbein, D = d+ω+A is the covariant connection, ω is the Cartan

Riemannian connection after Wick rotation, A is the gauge potential, ψ and
ψ̄ are the Dirac spinors, and R = dω + ω ∧ ω is the Riemann curvature
tensor and F = dA+A∧A is the gauge �eld strength. The various coupling
constants are set to 1 for simplicity. The theory we look at lives in dimension
4, which we now complexify by adding a small iε, where i is the imaginary
unit and ε is a small real constant to the transverse direction of this D = 4
real-analytic space-time. Thus we are now in complex dimension DC = 4,
which is real dimension D = 8. Adding a �ow parameter on this manifold
would give DC = 5 or D = 10. It is understood that this �ow is complex
holomorphic.

2. The Model We Get

We understand that θ then becomes a complex vielbein that corresponds
to a hermitean metric structure on X8 = (X4)C our complexi�ed manifold
X4. This manifold happens to be Stein. Now, the complex vielbeins X are
given by doing a unitary diagonalization of the hermitean metric h = hµν̄ .
So we set

h = E†δE
where δ > 0 is a real diagonal matrix and E is unitary. This δ is real

because h is hermitian, and it is positive because we work with a well-de�ned
Euclidean metric after Wick rotation. And, of course, the complex vielbein
X =

√
δE can be chosen so that it is unitary if δ := 1, so that X ∈ U(N). In

the general case X ∈
√
δU(D). Then

Lgravity = |D/ θ|2

becomes after this complexi�cation

Lgravity = |D/ X|2.
Let us use the Weizenbrock-Bochner identity

D/ 2 = � +
R

4
+ F/ .

Assume that the moduli of the topological type X are very coarse, like
most higher dimensional complex holomorphic manifolds. Then a brane
would be the sum of QFT's of all the holomorphic structures. We now get
for the �rst few terms of this matrix model with δ := 1, where X is now the
inverse X = (

√
δE)−1 and h is normalized
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Lmatrix ∼ tr(X†�X + X†X
Ricci

4
+ X†F/ X +m2

effX†X + Λ + X†V (X)X + ...)

where we added a cosmological term Λ, a e�ective mass meff and as well
as a matrix potential V (X) that is quadratic up to the �rst term, yielding a
quartic term as in Polchinski[10]'s description of matrix theory and D-branes,
see page 211 in volume II. For a non-normalized inverse metric G = h−1 this
is

Lmatrix ∼ tr(X†G�X+X†GX
Ricci

4
+X†GF/ X+m2

effX†GX+Λ+X†GV (X)X+...)

We can further generalize to non-hermitean metrics and obtain for exam-
ple for the integration measure in the action

√
hdDx ∼ det(G+B)1/2dDx ∼ det(G+B + 2πα′F )1/2dDx

where G is now the metric and not the inverse metric. The last term is the
root of the Chern class polynomial and is also the Dirac-Born-Infeld action,
and α′ = 1/T is the slope. The nature of the metric strongly a�ects the
stability and out-channel dynamics and decay.

3. Properties of this Matrix Model

We note that when we have the pure gravity Lagrangean

Lgravity = |D/ θ|2

the θa's can be made to describe brane �elds from exterior monomials

θa1 ∧ · · · ∧ θan

Now, these �elds are in the Matrix description

Xa1 ∧ · · · ∧ Xan

which describes a n− 1-brane.

4. Critical Dimension

The action

Lgravity = |D/ θ|2

above has critical dimension D = 4. The Matrix model

Lgravity = |D/ X|2.

has holomorphic critical dimension DC = 4. So the matrix model is a com-
plex holomorphic model, which justifes the Wick-rotation procedure.
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5. The Stein Manifold Property and The
Maldacena/Holography Property

In a talk at the Mittag-Le�er Institute I stated that the holomorphic
Matrix model above should be chosen to be Stein, that is

(1) X8 = (X4)C is a complex holomorphic manifold.
(2) X8 is holomorphically convex.
(3) X8 has global point-separating holomorphisms.
(4) X8 has global holomorphisms as local charts or patches.

This gives the property that

(1) X8 = (X4)C is a complex manifold which has the physics of is a real
D = 4 manifold. For example, if you let the bulk have trivial topology
you will understand that any topological theory in e�ective dimension
8 or dimension 10 displays holography to dimension D = 4, which I
call the Maldacena property.

(2) This is a obvious dimensional reduction.
(3) Wick-rotations and analytic continuations of amplitudes are well-

de�ned by theorems of several complex variables.

and you have to notice that this is the exact opposite of the compact
situation that is chosen by many physicists and mathematicians. It's more
or less at the other side of complex manifold behaviour. Mathematically this
dimensional reduction has been known for long as the Oka principle.

6. Holomorphic Factorization

The holomorphic model above satis�es the well-known holomorphic fac-
torization principle in string theory, albeit now in the brane setting. This is
known to me as the D'Hoker-Phong theorem, readily accessible in the liter-
ature, see Witten et al [7]. That is, any brane correlator W can be seen as
a holomorphic factorization

W = CC̄

For example, the partion function is

Ztotal,D=10 = Z4Z̄4.

I argued in my book that holomorphic factorization is very important in
gravity and string theory, see Torbrand Dhrif[3]. This also is related to some-
thing I call algebraic duality and gauge theory-string theory correspondences.
For example to 1-loop or genus g = 1 this is

Ztotal,D=10 = 16Πn
(1 + qn)8

(1− qn)8
= (4Π

(1 + qn)4

(1− qn)4
)2 = Z4Z̄4.

where

Z4 = 4Πn
(1 + qn)4

(1− qn)4

where q is real. Analysis of Z4 reveals that it is related to to SUSY
gauge theory in D = 4. The square Z4 × Z̄4 comes from the probability
interpretation of quantum theory-that is, taking squares of wave-functions
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gives probability densities-and is a very nice motivation for these dualities.
In my book I called these two di�erent situations the half-density and full-
density situations or theories, see Torbrand Dhrif[3]. In string scattering
theory it has been known for long that one describes physics in terms of
full-densities, where as gauge scattering theory requires the norm squared of
S- matrix elements, that is half-densities.

7. The Moduli of These Brane Theories

Actually, in the complex geometry setting to brane theory, pending on the
nature of the situation, the moduli can be very big or very scarce. A analytic
hypersurface for example can have very large moduli, where as a compact
Riemann surface has �nite dimensional moduli.

8. The Nature of Einstein Branes

In my articles Torbrand Dhrif[5] and Torbrand Dhrif[6] I state some of the
properties of Einstein-Branes, which I call E-branes. For Einstein Branes
the partition functions reduce to a single topology type because of a hidden
di�eomorphism (biholomorphism) symmetry for the actions of these real
analytic D = 4 branes we begin with, or (D = 10 or Deff = 8 holomorphic
manifolds). Since in the Stein situation these D = 10 models will be very
loose this is exactly the right tool to compute amplitudes, at least when we
have a nice deformation or homotopy of these manifolds. So basically we are
always looking at 3-branes up to di�eomorphism, which we then complexify-
that is our trick.
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