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Abstract. This is a sequel to the article 'A More or Less Well-Behaved
Quantum Gravity Lagrangean in Dimension 4?' in Advanced Studies in
Theoretical Physics, Torbrand Dhrif[6]. I propose a Quantum Gravity
Lagrangean, and I �rst work with a simpli�ed linear version of the non-
linear theory I propose. I hope that Feynman calculus behaves well for
these theories. These two actions are naively renormalizable( a concept
de�ned in the article, more or less equivalent to the notion of a CFT)
in dimension 4 and have critical dimension 4, although the non-linear
theory is a CFT in every dimension and so every dimension is critical
for it. The non-linear theory is equivalent to Einstein gravity in the
interaction picture up to a rede�nition of the coupling constant. It is
also expected to be close to some subsectors of IIA string theory, and
relates to M(atrix) Theory. As applications of these theories I show two
theorems; One that is a Maldacena type theorem and another which is
gauge-gravity duality, both with D = 4 space-time but with far more
general geometry. I also go through gauge-gravity dualities in arbitrary
D but in other settings. This is still a working paper and thus not
�nished.

*E-mail; eric.torbrand@gmail.com
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2 E.B. TORBRAND DHRIF*

1. Gravity Quantized in Dimension 4

We assume standard notation such as that ω = ωαa θ
aTα is the ON-

connection, Tα are generators of the Lie algebra so(1, D− 1) in the de�ning
representation, θa are the vielbeins, ∧ is the wedge product, g is the metric
or a dimensionless gravitational coupling constant as apparent from the situ-
ation, R is the Riemann curvature or the the Ricci scalar curvature pending
on situation, Ricci is always the Ricci scalar curvature, A is the gauge poten-
tial, F is the gauge �eld strength, Γa are generators of the Dirac or Cli�ord
algebra, d is the exterior derivative, D is either the Riemannian (pseudo-
Riemannian) covariant ON-connection with color, so D = d+ ω +A, or the
dimension of space-time. This real space-timeM is assumed to be complexi-
�ed toMC, so that we have added very small negligible imaginary directions
and made it holomorphic. D is then the dimension prior to complexi�cation.
The δab and ηab are the Kronecker deltas in various signatures. � is the con-
nection D'Alembertian or Laplacian (pending on signature) de�ned as in the
appendix. ∗ is either the dual or the Hodge star. When I write (physical)
dimension, such as in dimensionless or dimensionfull, I usually mean it in
the sense of physical length or mass dimension.

Notice the following Bochner type formula for compatible spinor connec-
tions on spinor �elds

D/ 2 = � +R/ + F/ = � +
Ricci

4
+
Fab[Γ

a,Γb]

4
,

where Ricci is the curvature scalar, see Lawson and Michelsohn[12], page
160, page 164 and page 398, or Jost[16], page 145. Here

R =
Rab
2
θaθb =

Rab
2

α

Tαθ
aθb =

Rab
2

α

Tαθ
a ∧ θb

is the Riemann curvature tensor, a Lie algebra valued 2-form, with Tα a
basis of the de�ning representation of the Lie algebra so(1, D − 1). F is the
gauge �eld strength for U(N) or similar gauge group. This formula for the
square of the Dirac operator D/ will be the inspiration to much of the ideas
in this article. We want to �nd something similar on vielbeins, and also
relate this to vielbeins. We use the Dirac or Cli�ord algebra representation

Γa = θa + θ∗a

so that

[Γa,Γb]+ = {Γa,Γb} = 2ηab.

We now work with Euclidean signature, so ηab := δab. This does not a�ect
the discussion, albeit Lorentz signature has to be used in the physical case.
Here θ∗a := θ̄∗a and θa generate a �nite dimensional Fock-algebra via

δab = [θ∗a, θb]+ = {θ∗a, θb} = θ∗aθb + θbθ∗a

and

0 = [θa, θb]+ = {θa, θb} = θaθb + θbθa.

Also

0 = [θ∗a, θ∗b]+ = {θ∗a, θ∗b} = θ∗aθ∗b + θ∗bθ∗a.
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1 For a good account of Cli�ord algebras and related matters, see Jost[16],
page 55-75. Jost[16] de�nes on page 68 spinor space S over a point p in space-
time MC as S = ∧T ∗+p MC, the �ber of the holomorphic exterior cotangent

bundle over that point 2. This is very closely related to the vielbeins on space-
time since the holomorphic vielbeins with complex coe�cients over that point
generate this exterior algebra. The θ = [θa] = [θaµdx

µ] is a smooth enough
with xµ a real coordinate( and not holomorphic intially) ON basis on the
pertaining manifold. This is also a vector-valued one-form, the components
are the vielbeins. The θ∗a are then the dual vielbeins as above. For the
colored vielbeins used later see the appropriate appendix. This is in the
notation and idea of E. Cartan, who wrote the metric g in terms of the
veilbeins θaµ as gµν = θaµδabθ

b
ν . Equivalently g(θa, θb) = δab or

g = gµνdx
µ ⊗ dxν = g(êa, êb)θ

a ⊗ θb = δabθ
a ⊗ θb

where êa is the ON basis in vector form. From now on we let latin letters
a, b, c, · · · denote expressions in the ON-frame and greek letters µ, ν, σ, · · ·
denote expressions in the coordinate frame. We set the vielbein Dirac oper-
ator as

D/ = Γµ(∂µ + ωµ +Aµ) = Γµ(∂µ + ωαµTα +Aβµtβ) = ΓaDa

where ∂µ is partial di�erentiation with respect to the real coordinate xµ,
ωµ the ON-connection, Aµ := 0 is the gauge potential and tβ are the gen-
erators of the Lie algebra u(N) in the de�ning representation, with anti-
Hermitean conventions3. See Green, Schwarz and Witten [19], page 387,
volume II, for this Dirac operator representation 4. The gauge potential is
set to be zero because it does not a�ect the discussion below to any greater
extent. We also set

Γa = θaµΓµ.

Let us de�ne the pure non-linear gravity action and Lagrangean as

SGravity =

∫
LGravity

√
gdDx =

∫
|D/ θ|2√gdDx.

We thus conclude the following ( see a side condition below) 5

1You could see this as θa := θa∧ the exterior product and θ∗a := ia the interior product
on a exterior algebra generated by the vielbeins θa over smooth functions.

2I set V := T ∗pM
C as the �ber of a real cotangent bundle overMC as a real manifold, and

W := T ∗+p MC de�ned over the complex numbers, with his notation. Thus V ⊗C = W⊕W̄ .
3This gauge group is for real usually U(1)×SU(2)×SU(3)× · · · , and here we assume

that the graviton does not carry such charges by seeting Aµ := 0. That means no electro-
magnetic, (electro)weak or chromodynamic charge, so we can say N = 0, N the number
of colors. It is natural to believe that there exist such charged exitations of the graviton
however. Here I use the standard physics notation ×, which should be the tensor product
⊗.

4The Hodge representation of this Dirac operator on vector valued di�erential forms is
D/ = D −D∗ = ΓµDµ, where D

∗ is the Hodge dual of D. Yes, the minus sign is correct.
5The inner product is de�ned in Hodge notation as < ω, η >= ∗(ω† ∧ ∗η). ω and η are

vector valued di�erential 1-forms. † is the Hermitean adjoint.
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|D/ θ|2 = θ∗D/ 2θ = θ∗(� +R/ )θ = θ∗�θ +R = Ricci

with R the Ricci scalar 6. Here θ is the graviton or vielbein and the Ricci
term arises similarly to Lawson and Michelson [12], page 156, Jost[16], page
137 and page 146. Also you can check the 1:st appendix at the end of this
article where I do the calculus for these expressions in the Cartan formalism
that I use. Notice that this leads to the Hilbert-Einstein action 7

SEinstein =

∫
M
LEinstein

√
gdDx =

∫
M
Ricci

√
gdDx

when we assume the side condition

θ∗�θ = 0,

which basically states that gravitons are mass-less and propagate with the
speed of light in a appopriate �at background with no external �elds. So
with our side condition,

LGravity := |D/ θ|2 = R = Ricci = LEinstein

or in the interaction picture,

LGravity,interaction = R = Ricci = LEinstein.

Remember that we exponentiate the interaction Lagrangean or Hamilton-
ian, pending on a sign, to obtain the matrix elements in QFT- say in the
operator formalism- so we are not wrong, we are completely right! 8

Let us treat the vielbein θ as a vector valued 1-form independent from the
metric in this �rst analysis of the pure gravity action. I call this the simpli�ed
linear setting or theory. We will look at the full non-linear situation later in
this article. The non-linear theory is very di�cult to handle, and that is the
reason for this �rst simpli�cation. See section 5 and later. We now set the
pure gravity simpli�ed linear theory Lagrangean as

LGravity,simplified := |D/ θ|2h
Here h is the background non-dynamical metric and the norm | · | and

it's associated inner product < ·, · > only depend on the background met-
ric h. The vielbein Dirac operator in this simpli�ed theory depends on the
background metric and does include connections. This background metric

6We sometimes suppress a minus-sign or a imaginary unit i in the following.
7Here we have supressed a term 16πG, G the gravitational constant. We will in fact

reformulate the gravity coupling constant as associated to the ON-connection instead,
multiplying the ON-connection, similar to the standard formalism of gauge theory. The
usual gravity coupling constant has physical dimension, unlike the coupling constants of
the standard model. This screws up the dimension counting if you do not rede�ne it in
this way, at least if you normalize the vielbeins. See remark 5.16 for thoughts about this.
Also, if you do not normalize the vielbeins at all, and thus do not subscribe to most of the
big assumptions of this article, the physical dimension calculus still goes through and gives
Maldacena and Gauge-Gravity duality. See remark 5.12 for not assuming normalization
of vielbeins, and remark 5.7 for Maldacena and Gauge-Gravity calculus.

8You could also see this as employing a arti�cial counter-term. These two theories are
equivalent modulo this term.
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h should not be confused with the full dynamical metric g. This simpli�ed
linear Lagrangean has physical mass dimension 4(Compare to a YM-term if
you wish, say in QED, it has the same dimension and looks very similar.),
thus naively renormalizable in dimension 4. This concept of naive renormal-
izability is de�ned in section 5. Let's prove this in a more obvious manner:
Our volume measure is

√
gdDx, and since we use the background metric only

this becomes
√
hdDx. Then our action functional becomes

SGravity,simplified =

∫
|D/ θ|2h

√
hdDx.

We set ea := θa/La, where La is the length in direction a. This ea has
dimension 0 and is θa after a normalization to make it give probabilities
which are normalized to a total probability of the number 1, look at the note
below. Thus eaµ has mass dimension 1. Thus �nally

(θaµ)∗(� +R/ )(θaν)normalized = (eaµ)∗(� +R/ )(eaν)

has mass dimension 4 or length dimension −4. The space-time measure
has length dimension D. So we have naive renormalizability by dimension
counting in D=4, and the critical dimension is also D=4. See section 5 for
the de�nitions of naive renormalizability and critical dimension.

Note the identity

√
gdDx = θ1 ∧ θ2 · · · ∧ θD = (T × V )(θ1/T ) ∧ (θ2 ∧ · · · ∧ θD)/V.

Here V is the volume of space and T is the length of time, and we set
space-time to be tubular or foliated with spatial leaves of volume V. This
becomes √

gdDx = e1 ∧ · · · ∧ eD × V × T.
For information on why the vielbeins can be interpreted as generating

probability currents via exterior algebra see my book, Torbrand Dhrif [5],
it's basically a statement of compatibility, or that the covariant gradient and
covariant divergence of monomials generated by vielbeins vanishes. See the
expressions

J3 = ∗θ1/V = e2 ∧ e3 ∧ e4, DJ3 = 0, D∗J3 = 0,

so we equate the current J to the above form. Evaluate the current on
a cycle on when expressed in the orthonormal frame (θa). This is assumed
that we pinpoint a �xed time where the graviton particle is measured with
certainty, that is almost surely. Also note that the integral over some domain
in space-time of the space-time volume form

J4 =
θ1 ∧ ∗θ1

V × T
=
θ1 ∧ ∗θ1

vol(M)
= e1 ∧ e2 ∧ e3 ∧ e4, DJ4 = 0, D∗J4 = 0

could have the interpretation of measuring the graviton particle in that
time interval and part of space. Here vol(M) denotes the total volume of
space-time. This normalization physically means that the graviton will be
detected somewhere in space-time. Of course this is a covariant statement
in space-time. Most of the probability mass will be very near the wave front
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caused by the hyperbolic wave equation that the graviton satis�es, and that
is a standard feature of quantum �eld theory. It might be good to �rst look
at closed manifolds( compact manifolds) as space-time to make this calculus
work. This is better than the 3-dimensional version in that it is completely
covariant and has no problems of choosing 'space', and 'time' which is not
necessarily easy. Also, if we carry the whole formalism through we need this
to understand matrix elements of the S-matrix in probabilistic manner in
position space by using the Hodge inner product.

If you set θ0 = du = Du, where u is some smooth enough function and d
the exterior derivative, you end up very near to quaternionic geometry, see
Hitchin et al. [11], page 9-30.

I now state the Lagrangean density for the standard model with gravity
but not including symmetry braking terms, ghost terms, e�ective action
terms, or mass terms, in the non-linear theory;

Ltotal = (|D/ θ|2 + ψ̄iD/ ψ +
1

4
|R+ F |2)√gdDx.

Here
√
gdDx = εM = θ1∧· · ·∧θD is the volume form and measure, ψ and

ψ̄ are the Dirac spinors, R = dω+ω∧ω is the Riemann curvature tensor with
ω the ON-connection, F = dA+ A ∧ A is the gauge �eld strength or gauge
curvature with A the gauge potential. Please do not confuse the two di�erent
Dirac operators in the Lagrangean above, one of them is the vielbein Dirac
operator (with ON-connection) and the other is the spinor Dirac operator
(with spinor connection), so they are two di�erent mathematical objects.
One can say that the module de�nes which kind of Dirac operator is used.
Both of these Dirac operators can be assumed to come from a more general
Dirac operator on a bigger space, hence the notation.

The linear simpli�ed theory Lagrangean density for the standard model
with gravity, without symmetry braking terms, ghost terms, e�ective action
terms or mass terms on a background space-time with �xed metric h is;

Ltotal,simplified = (|D/ θ|2 + ψ̄iD/ ψ +
1

4
|R+ F |2)h

√
hdDx.

I should point out that we have to work with L2-spaces, that is well-
de�ned Hilbert spaces, and also the mathematical theory of currents, which
are generalizations of distributions to di�erential forms. In the most triv-
ial applications and toy models one uses a compact smooth setting, but
L2-spaces of distribution valued forms are probably the �rst candidates for
appropriate spaces for us to use in mathematical physics.

I summarize by the following;

• These theories or actions are naively renormalizable by dimension
counting and scale invariant in dimension 4. They have critical di-
mension 4. This is as good as the standard model in particle physics.
• Note that the θaµ follow bosonic commutation rules while the θa follow
fermionic anticommutation rules. This is not a statement about spin.
• Note that LEinstein is the interaction Hamiltonian or Lagrangean,
pending on a sign, of our non-linear Lagrangean LGravity . So if you
use the appropriate interaction picture it is exactly the same thing.
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• The calculus of the norm squared of matrix elements is evident. Feyn-
man calculus for (unpolarized) cross-sections goes through, which is
a great simpli�cation, and produces metric terms which are much
easier to handle in this theory.
• The vielbein and graviboson are the fundamental �elds. The connec-
tion 'graviboson' has the property that the ON torsionless connection
will solve the equation of motion obtained from the above pure grav-
ity Lagrangean upon variation of the vielbein. This equation is 9

10;

D/ 2θ = 0.

Thus the equation of motion is that θ is harmonic11. I will say that
the gravitational �elds are on-shell when they satisfy this equation of
motion, this is standard physics nomenclature when a equation of
motion is satis�ed. Actually there is a theorem on harmonic vector
valued smooth di�erential forms on smooth compact manifolds that
you should know. It states the following 12;

D/ 2θ = −(D∗D +DD∗)θ = 0

is equivalent to

Dθ = 0, D∗θ = 0.

This means that the equation of motion for the pure gravity term
in the Lagrangean is equivalent to requiring a compatible connection,
basically the �rst Cartan structure equation with vanishing torsion;

dθ + ω ∧ θ = Dθ = T = 0.

Thus the relation between the vielbein and the connection is as
usual in Cartan's formalism or version of Einstein gravity. So, from
the point of view of elementary physics this looks right. Please note
that the ON-connection is not the same as the metric Levi-Cevita
connection.
• I think we have relations to 8/10-dimensional superstring/supergravity
models with certain versions of the Maldacena conjucture or theorem
13, See Torbrand Dhrif[7], as long as the bulk has trivial topology such

9In correct signature this is a wave equation. It reduces to the classical linear wave
equation (∂2

t −∆)θ = 0 asymptotically, with ∆ the three dimensional �at Laplacian and
∂t the partial derivative with respect to time, of course in �at Cartesian geometry. I leave
it to the PDE a�cionado to study this equation closer.

10I am using the simpli�ed linear theory to derive this equation of motion.
11There are many kinds of notions of harmonicity in the literature, this is just one of

them. It is apparent what we mean.
12The terms D2 and D∗2 are usually dropped as they vanish from the Lagrangean.

This theorem holds for the full nonlinear D/ 2.
13The Maldacena conjecture and Gauge-Gravity duality to 1-loop turns out to be a

study of trivial identities for determinants of the operator D/ 2. You will have to assume
some linearization of the operatorD/ 2 to do this. As I state in the appendix, there are clear
supersymmetries in kinematical dimension 4, which one can use to prove such conjectures
on a single line. Gauge-Gravity duality generalizes to much more general geometry in
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as the forward hyperboloid of some of the simplest dS/AdS-spaces,

ρ2 = t2 − x21 − x22 − · · · − x2n
all variables real, but with Wick rotations allowed in all coordinates,
in the Green-Schwarz formalism after complexi�cation of this 4 di-
mensional model. Particle physicists and quantum �eld theorists
do work with a complexi�cation by standard, e.g the Wick rota-
tion procedure. Then the topology is namely the same, it's all in
space-time, and this gives equivalent topological functors, like coho-
mological theories or physics expressed in cohomological theory such
as BRST-theory, topological quantum �eld theories, anomaly theory
or index theory. Remember, these theories could have pathologies or
other peculiarities. In as far as string/sugra theory resemblences this
is a good sign, because we think those models are at least somewhat
nice. Yet our theory, notice well, lives in dimension 4.
• Notice that the string theory IIA Lagrangean (Use a Bochner type
identity similar to the appendix) 14 is

LST,IIA =

∫
DĒ∗D̄Edθdθ̄ +Ricci ∼ |D/ E|2 + ψ̄(iD/ )ψ +

1

4
|R+ F |2,

with the super�eld

E = Eaµê
µ ⊗ êa + ψ̄µθêµ + θ̄ψµêµ +

1

2
(F +R)abêa ∧ êbθθ̄.

The operator D is de�ned as

D = θe
∂

∂z
+

∂

∂θ
,

where

∂

∂z
is the Cauchy-Riemann operator or the free chiral Dirac operator

on a Riemann surface(the string sheet), and e is the covariant holo-
morphic complex zweibein on this sheet. See Polchinski[17], page
105, volume II, or Witten et al [8], page 989, volume II, where we
have to use Eaµ for the vielbein instead to not abuse notation. The θ

and θ̄ above are then anticommutative Grassmann variables. Here∫
(· · · )dθdθ̄

is the Berezin or Grassmann integral. Here we put the Dirac
fermion mass to m = 0 and the usual Fayet-Iliopolous term is in-
stead set to the gauge and gravity �eld strength. That makes more

D = 4 if you use the gravity proposed in this article, and the Maldacena Theorem also
generalizes in D = 10 with Deff = 8 kinematical dimensions to more general geometry
than usual. This is a clear sign that we are doing something right.

14We de�ne the notation below, and there is a gauge potential A, a color term N and
a graviboson ω supressed. Use the covariant Lagrangean on the right in general.
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sense right here. Also, please do not confuse the two di�erent Dirac
operators above, one of them is the vielbein Dirac operator(with ON-
connection) and the other is the spinor Dirac operator (with spinor
connection). Both of these have gauge potential terms included and
can be assumed to come from a more general Dirac operator on a
bigger space, hence the notation. The really big gain is that our
Lagrangean Ltotal, which is very close to the string theory IIA La-
grangean LST,IIA, that works in dimension D=10( with kinematical
dimension 8 and kinematical codimension 2), works with critical di-
mension 4. That is really big news! It also makes it very probable
that we have some very nice dualities to expect between these di-
mensions after complexi�cation of the 4-dimensional model that we
propose in this article.
• Complexi�cation makes the graviton sector of this superbrane model
a M(atrix)-brane Lagrangean on a Stein brane(manifold), see the
article Torbrand Dhrif [14]. I tend to see branes as sums over moduli
of QFT's. There are various mechanisms, see Torbrand Dhrif[15],
that may make all that remains a QFT.

2. On the nature of the non-linear partial differential
equations for this theory

In brief, I would like to state the following easy result for a PDE specialist
or someone that has studied pseudodi�erential operator theory.

Theorem 2.1. Assume various kindness assumptions. Then asymptotically
in R4, via standard theory for non-linear elliptic operators of order two, the
solutions to the non-linear QFT PDE's exist.

3. On the nature of scattering for this theory

Theorem 3.1. Assume various kindness assumptions as in the above theo-
rem, such as that the solution and data sections or �elds of the non-linear
QFT PDE's satisfy a L2(RD, dDx) condition, dDx the standard Lebesgue
volume measure 15. Then the Fourier-transform of outgoing �elds or states
exists at any order in perturbation theory and gives well de�ned cross-sections
and S-matrix elements at in�nity.

4. Another derivation of the dimension counting and critical
dimension 4 for independent metric and vielbein, also

called simplified linear setting

Set X := θ the vielbein in the matrix formulation, see Torbrand Dhrif [14].
Then normalize the metric h to simplify, so that h = 1, and do the scaling
procedure so that X has length dimension −1, so X corresponds to e in the
�rst section. Then

|D/ X|2 ∼ tr(XT�X) + · · · .
15The case of Hilbert-Schmidt propagators and their standard L2 Hilbert space setting

is interesting with regard to this. This also has ties to renormalization theory. For example
you may want to deform a pathological propagator to a Hilbert-Schmidt propagator and
then analytically continue the expression you have in the deformation or renormalization
parameter.
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Since � has length dimension −2, XT has length dimension −1 and X has
length dimension −1 we get total length dimension −4. Since the volume
measure has length dimension 4 in dimension 4 the action is dimensionless
in D = 4. A action where all parts are dimensionless in this way is scale
invariant. Thus we see that we have critical dimension D = 4 in this setting.

5. Derivation of the dimension counting and arbitrary critical
dimension for dynamical metric in terms of vielbeins, full

non-linear situation

Now you scale both the vielbein and the metric and you realize that scaling
the vielbein implies a scaling of the metric. This is the general situation. The
Kroenecker delta δab does not change. Since gµν = eaµδabe

b
ν and X := eaµ is

normalized or scaled, so that it has physical length dimension −1, gµν has
to have length dimension −2. Then, up to reorderings,

|D/ X|2 ∼ tr(XTG�X) + · · · .

Since � then has length dimension 0, XT has length dimension −1 and X
has length dimension −1, and G := (gµν) has length dimension +2, we get
total length dimension 0. Since the volume measure has length dimension 0
in all dimensions D when you scale the metric the action is dimensionless.
We are therefore done.

Let us write this in components as well. The leading and kinematical
part of the Lagrangean seen as a di�erential form is, up to reorderings and
parentheses,

gσρ(Dσe
a
µ)(Dρe

b
ν)gµνδab

√
gdDx.

We see that the physical dimension generated by all these terms combined
cancels in all positive integer dimensions D.

Remark 5.1. You can always get the dimension calculus right by not scaling
the metric gµν and keep it dimensionless16. Also you could pretend to view
the metric and the frame as independent �elds, which makes the dimension
calculus trivial since you then only scale the vielbeins which are a type of
frame. There is no point in keeping the frame and metric as independent
�elds for real, since we would then have to consider the metric dynamics as
independent of the vielbeins, thus with a separate equation of motion, thus
we would not gain anything. We want to do gravity out of vielbeins only, and
try to gain an advantage by formulating gravity in terms of vielbeins.

Remark 5.2. The scaling parameter La of the veilbein is interesting in the
usual renormalization of this theory. You can also set it to be the volume
of space-time in dimension a, thus de�ning a natural length or time unit.
Thus we have La := 1 unit of length or time. So, in these units space has
volume 1, space-time has volume 1, etc. This is handy when you normalize
the vielbeins as the calculus then simpli�es. Of course this trick depends of
the topology of space-time and can not always be used.

16Notice for example that AdS metrics do not scale, which is again very interesting. I
will come back to this in remark 5.3 and remark 5.4.



GRAVITY IN D=4, NAIVE RENORMALIZABILITY, CFT'S AND DUALITY 11

Remark 5.3. It seems that the normalization of vielbeins generates space-
times that look like the boundary of AdS spaces. Let us show this; We start
by looking at the vielbein θa. After normalization with the 'radius' parameter
u0, instead of using L, we get

θa

u0
as our new vielbein. Thus we get the metric

gboundary =
gµν
u20

dxµ ⊗ dxν

which is the boundary of ( u becomes a variable instead of the constant u0)

gAdS =
1

u2
(gµνdx

µ ⊗ dxν + du2)

one often sets gµν = ηµν in the literature so this becomes

gAdS5 =
1

u2
(ηµνdx

µ ⊗ dxν + du2)

where I wrote AdS5 to emphasize the dimension of the 5-dimensional AdS
space. See Natssume[20], on page 176 for example, and on chapter 6 where he
explains AdS spaces. I do not however think that it is necessary to use these
AdS spaces in the present formalism, we can work with the usual metric and
4-dimensional spacetime in the calculus. This remark is more of an aside.

Remark 5.4. Our spacetimes must be AdS boundaries or similar spaces,
since the full metric tensors of these spaces will scale well, being invariant
under scalings. That also means that the metric tensor(you can see it as a
Kahler form, so I am not talking about the components but the full tensor)
is dimensionless after normalization, which is imperative, since only then
will the action describe a graviton with a Born interpretation. I am saying
that gµν , the metric prior to normalization in remark 5.3, and gAdS are both
dimensionless.

Remark 5.5. The calculus is tedious and complicated, and very often it
simpli�es by looking at the vielbeins and the metric as independent �elds, as
stated above. We called this the simpli�ed linear setting, thus working around
a background metric hab, which yields the dynamical metric as gµν = θaµhabθ

b
ν .

Of course this causes a linear oversimpli�cation of these matters and does
not capture the full complexity of the situation, which also is ambiguous, but
does it capture enough?

Remark 5.6. Remark 5.5 on the complicated calculus is tied to the fact that
you will often have to simplify the matter by assuming that the variation
of the Dirac operator with respect to the vielbeins should be zero, that is
δD/ = ε[A,D/ ] = 0, ε a small real number, and A generating the �ow
of vielbeins. This is a covariant energy conservation statement and so a
natural physicality condition. You can read δD/ = 0 as the statement that
the Dirac operator does not depend of the vielbeins over the background, so
D/ 2 becomes a linear operator. If you can assume δΓµ = 0 in the coordinate
frame this would imply this assumption.

Remark 5.7. This remark is about a proof of a Maldacena type conjecture
and gauge-gravity duality, assuming the theory presented in this article. You
can use the action
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SGravity =

∫
θ∗D/ 2

cθ
√
hdDx,

where h is the background metric in remark 5.5, and D/ c does ot depend
on the vielbeins as in remark 5.6 and only on the background metric, and Dc

is compatible with respect to the background metric and background vielbeins.
This is to work with a linear operator that de�nes a functional determinant.
You can also make the Taylor series approximation for the non-linear oper-
ator 17

D/ 2 = D/ 2
c +O(δθ) +O(δω) +O(δA)

where c denotes dependence on the background �elds only, and thus D/ 2
c de-

�nes a linear operator. Here O is big ordo and δ denotes a small perturbation.
Since this is so interesting I will give an example of such a computation or
proof in D = 4 for gauge-gravity duality at 1- loop. We use the operator
symmetry derived in the 1:st appendix at the end of this article. We have 18

19 20

17Here I assume that only the operator 'Hamiltonian' D/ 2 is given and we do not
look at the Lagrangean, so we are working in the operator formalism. The background
connection Dµc that we work with is still compatible with respect to the background.

18To get these identities to work you will have to realize that the graviton has double
the gravitational charge of the gravitational charge of the Weyl fermion. This means that
gG
2

= gF , where gG is the gravitational charge of the graviton and gF is the gravitational

charge of the Weyl fermion. So you will have to insert a factor 1
2
in the gravity connection.

Of course this is connected to the spin of the graviton, that has spin 1, as compared to
a Weyl fermion which has spin 1/2. Thus I suspect that the gravity quantum is given
by natural integer multiples of 1/2, as given by the spin. Also, if we for example set

g :=
√

4πGM0 a gravitational coupling constant with M0 a fundamental mass, a Regge
slope will arise from the spin parameter. Of course this g is dimensionless as required.

19The graviboson ω/ term in the vielbein Dirac operator di�ers from the graviboson
term in the spin Dirac operator by a factor 1/2, so ω/ G/2 = ω/ F , ω/ G the graviboson term
in the vielbein Dirac operator and ω/ F the graviboson term in the spin Dirac operator. I
absorbed that in the coupling constant in the previous footnote.

20There is a pitfall that you absolutely have to notice, although it is true that the
square Dirac operators will coincide, also the domains or Hilbert spaces that these square
Dirac operators act on have to coincide, of course up to the representation used. If we set
D/ 2 : H 7→ H as the square Dirac operator, H must be the same for the two di�erent Dirac
operators. This issue was neglected by me in previous work. In D = 4 we have that FC4,
denoting fermionized C4, is both spinor space and the complexi�ed vielbeins over a point in
space-time so we come out �ne. More explictly, we work with the space L2Γ∞(M4, FC4) ⊂
H of smooth square integrable sections of a bundle over space-time with �ber FC4. Since
[Γa,Γb]/4 = θaθ∗b are the complex D×D matrices, FC4 is the appropriate representation
module for commutators of Dirac matrices inD = 4, both in the vielbein formalism and the
spinor formalism. Also, only these commutators appear acting on spinor space or vielbein
space for the square Dirac operators so we only need a representation module for these
commutators, which is a simpli�cation of the situation. To be even clearer the vielbein

connection is Dµ,V = ∂µ+ωαµTα+Aµ = ∂µ−ωµabθaθ∗b+Aµ = ∂µ−ωµab [Γa,Γb]
4

+Aµ, and

the spinor connection is Dµ,S = ∂µ −
ωµabθ

aθ∗b

2
+Aµ = ∂µ −

ωµab
2

[Γa,Γb]
4

+Aµ, so we have
the same representation module for the connections. Note that ωµab is antisymmetric in a
and b. Since only these connections appear in the connection Laplaceans �, and the rest
of the terms in the Bochner identities are the same, our reasoning is true if you make a
partial integration in the action for the connection Laplacean term. Only in D = 4 will
the representation theory coincide in this manner, with the correct constant multiplying
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ZGravity = det((iD/ )2c) = det((iD/ )2) = |det(iD/ )|2 = |ZGaugeTheory|2.
I used the identities derived in this article above, and I used the standard

formula det(AB) = det(A)det(B), where A and B are linear operators. Of
course there are Hardy-Ramunjan identities supressed above that permit us
to state the bosonic gravity partition function on the left as this determinant,
something that states that the partition function comes out equivalently in
the bosonic (NS) and fermionic (R) formulation. On the left we use what
I call the vielbein Dirac operator and on the right we use the spinor Dirac
operator on the background. The square of these two operators coincides in
D = 4. We can also prove this with operator traces

ZGravity = Tr(e−(iD/ )2cβ) = Tr(q(iD/ )2c ) = det((iD/ )2) = |ZGaugeTheory|2.
Here we have the linearized vielbein Dirac operator on the left and we have
the spinor Dirac operator on the background on the right. β ≥ 0 is a real
parameter. q is de�ned as q = e−β. All of these identities have to be nor-
malized, and renormalized as well, since these determinants and traces are
usually ill de�ned.

Now I will show a example of a Maldacena theorem with the assumptions
in this article, just to make the reader aware of the applications of this the-
ory. Assume X and Y have 4 kinematical dimensions each but really both
5 dimensions, so that the total cartesian product X × Y has dimension 10.
You can think of standard features of Green-Schwarz strings if you want to
motivate this. Then assume that the physics of X and Y are independent in
the sense that ZX×Y = ZXZY . Then we have that the supergravity proposed
gives

ZSUGRA,X×Y,D=10 = det((iD/ )2c)X×Y = det((iD/ )2c)Xdet((iD/ )2c)Y .

Using the previous calculations in this remark we easily get

ZSUGRA,X×Y,D=10 = ZGravity,X |ZGaugeTheory,Y |2.
For more calculations like these see Torbrand Dhrif[7].

Remark 5.8. This theory is amenable to particle physics, with the standard
assumptions of particle physics in RD. I expect drastic simpli�cations for
that situation, resembling the situation for standard gauge theory.

Remark 5.9. The action of this theory has a SO(D) symmetry group in
the ON frame or �at space-time21.The unit determinant comes from that
probabilities have to be positive. That gravity must have a SO(D) symmetry
group should come as no surprise, for example from relativity considerations.
In correct signature this is SO(1, D−1) symmetry where D is the dimension
of space-time. Since the critical dimension is D = 4 for our model we set
the symmetry group as SO(1, 3). One also sees the need for orientable space-
times to make the probability interpretation in the �rst section.

the Ricci scalar term. See the 2:nd appendix for a second proof of this theorem, but in
another setting where we work with the �elds θa as fermions instead of ψ.

21Actually the gauge theory part has a spin(D) symmetry group, so spin(1, D − 1) in
correct signature.
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Remark 5.10. The pure gravity part of the Lagrangean has to be modi-
�ed with a factor 1/2 to get the simplest Feynman rules, and also for other
reasons, such as most physical computations. So

|D/ θ|2 7→ |D/ θ|
2

2
.

Remark 5.11. The test of naive renormalizability below is the simplest test
in particle physics for the validity of a Lagrangean. If a theory is not naively
renormalizable you can discard it straight away from a physical point of view.
Also, experience from particle physics shows that theories that are not naively
renormalizable usually behave badly, and this is purely heuristic. After all,
you can not expect a action that has non-vanishing length or mass dimension
to be exponentiated from a physical point of view.

De�nition 5.1. A theory is naively renormalizable if it has dimensionless
action 22 and no dimensionfull constants.23 A naively renormalizable theory
is a conformal �eld theory (CFT) 24 and a CFT is naively renormalizable25.

De�nition 5.2. A theory is a CFT(conformal �eld theory) if it has dimen-
sionless action, no dimensionfull constants and a scale invariant action.

De�nition 5.3. A theory has critical dimension D if it has a dimension-
less action in that dimension D, no dimensionfull constants and the action
is scale invariant in that dimension D. Alternatively a theory has critical
dimension D if it is a CFT in that dimension D.

Remark 5.12. What if we do not scale the vielbein? Then it is hard to
interpret the graviton, that is the vielbein, as a �eld tied to a probability
density. You also then seem to end up in standard string theory. But,and
here is something really interesting; Then you do not have to invent a new
dimensionless coupling constant and the good old gravity coupling constant G
will do, and you will normalize the pure gravity action by 8πG, this including
the remark 5.10 on Feynman rules. For example my calculation of Gauge-
Gravity duality in remark 5.7 will carry through. So, even if some people
may not agree with this normalization of the vielbeins in this article it still
has great value for them. After all this proof is so elegant that few people
could object.

Remark 5.13. We can also de�ne scalings for vielbeins and other �elds,
without a probability interpretation. See Natsuume[20] for example, on page
68 to page 69. He sees such scalings as conformal transformations, which is
very close as an idea.

22When I write dimensionless or dimensionfull I usually mean it in the sense of length
dimension or mass dimension. We scale �elds and not constants here.

23This implies scale invariance for such a scenario. This is not the case if there are
dimensionfull constants involved.

24As an example of dimensionfull constants I mention these; A mass term such as in the
Dirac spinor mass term, a massive φ4-scalar or the Hilbert-Einstein gravity coupling G.
These usually break conformal symmetry and screw up the scaling properties. The Dirac
fermion mass and φ4-scalar mass are not real villains, but the gravity coupling usually
presents a problem. I choose to de�ne these things in this way to make the construction
as elegant and coherent as possible.

25At least by my de�nition.
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Remark 5.14. There is a notion that I call partial conformal invariance.
Basically you do not have to scale all independent �elds in a action, often you
can scale just and normalize just some of the �elds. The action Ltotal above
contains many �elds, and when you do regular CFT you can refrain from
normalizing the metric and end up immediately in critical dimension D = 4
as in the �rst derivation of critical dimension in this article, see sections 1
and 4. If you scale all �elds you will end up in arbitrary critical dimension
for the action Ltotal. And, since you are at liberty to choose dimension you
just pick D = 4 for our physical situation. So what happens is that you
want the action to behave well in the critical dimension predicted by doing
di�erent combinations of �eld scalings. For our action that means that we
are working in D = 4.

Remark 5.15. For the full nonlinear theory we must work with a background
�eld gauge, or at least with a expansion around the background, since the the-
ory otherwise only contains vertices and no propagators. This is a important
remark.

Remark 5.16. Earlier in this article I stated in a footnote that one has to
de�ne a dimensionless coupling constant g for gravity, instead of the usual
gravity coupling constant which actually has physical length dimension. The
other coupling constants of physics for electromagnetism, electroweak theory
and chromodynamics do not have dimension and we want to treat all theories
or sectors in the same manner. The gravity constant G has such dimension
that the usual Hilbert-Einstein action becomes of correct dimension in D = 4
and is therefore dimensionfull. The gravity constant g that we use micro-
scopically di�ers from the macroscopic gravity constant G.

Remark 5.17. The gravitational part of this theory looks like a gauge theory.
This makes it more probable as a viable theory, since the other interactions
of physics are accurately described by gauge theories, that we for example
believe are renormalizable.

Remark 5.18. In my early work I had the idea that gravity and space-time
would be accurately described by hypercomplex numbers, also called Cli�ord
algebras or Dirac algebras. These ideas can be traced to the work of Hamil-
ton, who discovered the quaternions, and are very old. Since Γa = θa + θ∗a

we see a clear relationship between gravity (the vielbeins θa) and hypercom-
plex generators Γa. So basically space-time is locally a (possibly pathological)
hypercomplex manifold. Of course there is not anything very new to this, but
it could be a good philosophical point.

Remark 5.19. The good way of de�ning the partition function ZGravity(iD/ ),

D/ here the vielbein Dirac operator, is ZGravity(iD/ ) :=
√
ZGravity((iD/ )2).

This has to do with matters of the spectrum of this operator.

6. What is a quantization of a theory ?

Let us look at the examples of QED, electroweak theory and QCD. They
are not statements or proofs of mathematics, they are statements of theo-
retical physics, with all they entail such as the philosophy of physics ( that
statements are true until proved wrong in some sense, either theoretically
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or experimentally). No one has reached further for the theories 26 of QED,
electroweak theory and QCD other than calculations at �nite loop order
and applying certain dualities to probe these theories. This is of course in
D = 4. This very same philosophy of physics applies to the gravity theory
given above. It is a triviality that this gravity theory is ok to 1-loop order,
for example if you use a functional determinant, with some renormalization
scheme such as zeta function renormalization, and di�erentiate with respect
to background �elds in a background �eld gauge. I claim that the simpli�ed
linear theory lives in the sense of naive renormalizability in dimension 4 and
that the full nonlinear theory seems to live in arbitrary critical dimension,
and that the interaction term of this nonlinear theory is Einstein gravity.
There is no reason not to believe that this theory behaves well at arbitrary
�nite loop order.

7. Appendix 1; Calculating the Bochner formula and the Ricci
term

This section is about the Bochner formula for the fully non-linear theory.
We will not assume that the connection is compatible with the vielbeins in
this calculation, so we are working with what we call a o�-shell connection,
and we start in a arbitrary frame. Let us start of with the trivial calculation

D/ 2 = ΓµDµΓνDν = µ+ ΓµΓνDµDν

where we de�ne 27

µ := Γµ(DµΓν)Dν = Γµ(∂µΓν)Dν + ΓµΓρωνµρDν = Γµ(∂µΓν + ωνµρΓ
ρ)Dν .

Assume for simplicity Cartesian coordinates and a �at metric and let us
use the following calculation from Nakahara[18] on page 440;

ΓµΓνDµDν = [gµν +
1

2
[Γµ,Γν ]]

1

2
[{Dµ, Dν}+ Fµν ] = DµDµ +

1

4
[Γµ,Γν ]Fµν .

Let us then set

� := DµDµ + µ.

In general coordinates and metric this is

� :=
1
√
g
Dµ
√
ggµνDν + µ.

Thus we have for the square of the Dirac operator

D/ 2 = � +
1

4
[Γµ,Γν ]Fµν .

26You should omit the mass terms of these theories here in this article. This is a
�rst analysis; On a compact background space-time the mass terms become compact
deformations that will not a�ect the situation very much. Of course the physical numerical
predictions change, but the niceness will be conserved.

27This term µ vanishes in the ON-frame for a compatible or on-shell connection by
virtue of the �rst Cartan structure equation. You then get the usual Bochner identities.
It is linked to the torsion of the connection.
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Writing, say in the ON-frame,

F/ =
1

4
[Γa,Γb]Fab,

this becomes

D/ 2 = � + F/ .

Of course if you set the gauge group as SO(D)× U(N) this is

D/ 2 = � +R/ + F/ .

We thus similarly de�ne

R/ =
1

4
[Γa,Γb]Rab.

We now show

θ∗R/ θ = θ∗RαabTαθ
aθ∗bθ.

We have for the commutators of the Cli�ord or Dirac algebra generators

[Γa,Γb] = [θa, θb] + [θ∗a, θ∗b] + 2(θaθ∗b − θbθ∗a).
Thus keeping terms that do not vanish because of the exterior algebra in

θ∗R/ θ

we get the above formula by antisymmetry in the last two of the indices
in Rabcd, the indices c and d;

θ∗R/ θ = θ∗RαcdTα
[Γc,Γd]

4
θ = θ∗

RαcdTα
2

(θcθ∗d − θdθ∗c)θ = θ∗RαcdTαθ
cθ∗dθ.

We use the inner product for vector valued forms as

< η, ζ >= η∗ζ = ∗((∗η)† ∧ ζ).

∗ is the Hodge star and † is the Hermitian adjoint. We proceed to the
calculation of the Ricci term

θ∗R/ θ.

First of all

∗θ∗R/ θ = ∗([∗θa]T [RαbcTαθ
bθc∗][θd]) = ∗((∗θa) ∧Rabcdθcδdb).

Because of antisymmetry in c and d this becomes

− ∗ ((∗θa) ∧Rabdcθcδdb) = − ∗ ((∗θa) ∧Ricacθc) = − ∗ ((∗θa) ∧Ricacθc)
which is

= ∗(δacRicac)(εM ) = Ricci(= Ricci ·N)

where εM is the volume and Levi-Cevita form on M , and we desuppress
a gauge group factor in the parenthesis, where N is the number of colors.
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This color term N can be taken care of by a suitable normalization of the
colored vielbeins if one wants to. We set the following convention

ε123···D = 1.

We thus have in D = 4 on vierbeins the Bochner reminiscent formula

θ∗D/ 2θ = θ∗(� +
Ricci

4
+ F/ )θ.

This looks similar to the spinorial Dirac operator identity that we started
this article with. So, as the reader understands, I see a possible supersym-
metry in D = 4 28. This identity for the square vielbein Dirac operator D/ 2

generalizes to arbitrary dimension D as

θ∗D/ 2θ = θ∗(� +
Ricci

D
+ F/ )θ.

Again, I remind the reader that we worked with the fully non-linear theory
in this section.

8. Appendix 2; Another proof of gauge-gravity duality

In this version of gauge-gravity duality we assume that we work in arbi-
trary D, and that θa is linked to a fermion if we change it's transformation
properties. We assume that we have a linearized vielbein Dirac operator
available, since we want to make sense of the functional determinants we use
in this section. We start with the following identity

ZGravity = det((iD/ )2c) = |det((iD/ c))|2.
Since we have the identity D/ c|ω:=ω/2 = D/ , where D/ c is the linearized

vielbein Dirac operator and D/ is the spinor Dirac operator, and both
act on the space of smooth square integrable sections of a bundle over
space-time with �ber FCD, that is fermionized CD, which we denote as
L2Γ∞(MD, FCD) ⊂ H, we get that 29

ZGravity = det((iD/ )2c) = |det((iD/ c))|2 = |det(iD/ )|2 = |ZGaugeTheory|2.
The key point here is to realize that the domain of the vielbein Dirac

operator coincides with the domain of the spinor or usual Dirac operator
(actually these domains are even equivalent). This is my version of gauge-
gravity duality and it is correct if we assume the ideas in this article. The
reader may want to make the calculation

D/ c|ω:=ω/2θ = D/ θ

28Note again that there is a factor 1/2 that relates the gravitational connections. If
the gravitational connection vanishes( so that ω = 0) this equivalence of square Dirac op-
erators, between the square vielbein Dirac operator and the square spinor Dirac operator,
is a trivial identity as even the Dirac operators coincide, then not including the fact that
the Hilbert space modules may di�er. This is, as stated again, a clear sign that we are
doing something right.

29I here suppress a factor 1/2.



GRAVITY IN D=4, NAIVE RENORMALIZABILITY, CFT'S AND DUALITY 19

to check this, where θ is the vielbein as a vector valued 1-form in E.
Cartan's usual notation. 30 You can easily see that the vielbein θ coincides
with the fermion �eld in all D when you change transformation properties,
that is remember the factor 1/2, which is related to how 1/2-spin �elds
transform under rotations and boosts. For the sake of completeness I state
the spinor Dirac operator on the background 31as

D/ = Γµ(∂µ −
ωµab

2

[Γa,Γb]

4
+Aµ) = Γµ(∂µ −

ωµab
2
θaθ∗b +Aµ)

and the linearized vielbein Dirac operator on the background is

D/ = D/ c = Γµ(∂µ + ωαµTα +Aµ) = Γµ(∂µ − ωµabθaθ∗b +Aµ),

where Tα are the generators of the Lie algebra so(1, D − 1) in the funda-
mental representation, if we use a space-time with correct signature. Also, I
use the following Dirac or Cli�ord algebra representation,

Γa = θa + θ∗a,

in this article, θa here the vielbeins or the fermions. The factor 1/2 that
pops up above is related to the local di�erence between SO(1, D − 1) and
spin(1, D − 1)32. We may want to call this N = D duality, after kind
suggestion.

This proof is di�erent from the proof of gauge-gravity for vielbeins θ = (θa)
and fermions ψ in remark 5.7. The big di�erence is that the gauge-gravity
duality in remark 5.7 is valid in D = 4, where as the proof in this appendix
is valid in all D. The reason is that these two fermion �elds are not the
same.

You may want to transform the fermions, and vielbeins, θa under SO(1, D−
1), just like Γa = θa+θ∗a, the gauge-gravity duality then obtained is a trivial-
ity in all positive integer dimensions D. This last way of looking at fermions
makes the duality that we state both trivial and profound. This last third
duality is probably the best.

Also, you may want to look on Green, Schwarz and Witten[19], appendix
5.A, volume I, for properties of the groups SO(2n) in such representations,
n a positive integer.

30Here, again, D/ c is the linearized vielbein Dirac operator and D/ is the spinor Dirac
operator.

31Of course you do the relevant computations in the fully non-linear situation to prove
various identities, such as the identities for the two Dirac operators below, and then
expand the relevant Dirac operators around the background as a last step, only keeping
the background term. For the linearized Dirac operators on the upper part of this page you
should use ω = ωαTα and ω/2 as the appropriate connections for the vielbein connections
and spinor connections respectively. That this makes sense is apparent from the Dirac
operator identities on this page.

32I am not in any way stating that spin(1, D − 1) and SO(1, D − 1) are equivalent as
groups or manifolds. In fact they are usually di�erent.
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9. Appendix 3; The Maldacena/Gauge-Gravity type
conjectures in this article

There are three Maldacena/Gauge-Gravity type conjectures in this article.
These conjectures are generalizations of early conjectures treated by among
others Maldacena and Polchinski that I �rst saw ca 1996-1997, and should
not be confused with other conjectures, and are related to the concept of
holography.

(1) The 1:st conjecture is that there is a duality between the vielbeins θa

on space-time that describe gravity and the Cli�ord or Dirac algebra
generators Γa that describe fermions on space-time. This is com-
pletely evident in all dimensions by Γa = θa + θ∗a, although there
may be �ner points such as a non-linear Dirac equation. In fact we
could describe the fermions directly in terms of the �elds θa = θaµdx

µ.
(2) The 2:nd conjecture is a duality between fermions described by Dirac

spinors ψ and gravity described by the vielbeins θ in dimension D =
4. We sketched on a proof in remark 5.7, above all in footnote 20.
We know that the dimension of the spinors and vielbeins coincides
in dimension D = 4, and we started on a proof. We need to inspect
this proof and make it with modern mathematical standards of rigor.

(3) The 3:rd conjecture and last Gauge-Gravity type conjecture is what
we called N = D duality in Appendix 2. I do not know if that
conjecture is true.

Again, this work should not be confused with other conjectures by e.g Mal-
dacena, Polchinski and other authors. The conjecture I mention here is that
they wanted the factorization

ZIIA = ZGravity,XZ
2
GaugeTheory,Y ,

where X = AdSn and Y = Sm. Here AdSn means a anti-deSitter space
and Sm a sphere. I think that X and Y could be more general, that is
the point of this matter. There is a strong relation between Gauge-Gravity
duality and Maldacena type statements, they are very simply related. With
Gauge-Gravity I usually mean statements of the type

ZGravity = ZGaugeTheory · ZGaugeTheory = Z2
GaugeTheory.

10. Appendix 4; The Lagrangean for the non-linear theory

The non-linear theory Lagrangean could be described by

Ltotal = (θ∗�θ + ψ̄iD/ ψ +
1

4
|R+ F |2 +Ricci ·N + θ∗F/ θ)

√
gdDx,

where the volume form is
√
gdDx = θ1 ∧ · · · ∧ θD. N is the number of

colors, but for N = 0 this becomes

Ltotal = (θ∗�θ + ψ̄iD/ ψ +
1

4
|R|2 +Ricci)

√
gdDx.

Again, do not forget that we have rede�ned the coupling constant to
a dimensionless coupling constant, so the omission of the standard factor
−16πG is not wrong. Remember that we de�ne
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� :=
1
√
g
Dµ
√
ggµνDν + µ.

Here µ is a torsion related term. Let us de�ne the torsion related term

Ξ := θ∗µθ = θ∗Γµ(∂µΓν + ωνµρΓ
ρ)Dνθ

and

∆ :=
1
√
g
Dµ
√
ggµνDν .

Then the full non-linear theory Lagrangean reduced to simpler compo-
nents is

Ltotal = (θ∗(−∆)θ − Ξ + ψ̄iD/ ψ +
1

4
|R+ F |2 −Ricci ·N − θ∗F/ θ)√gdDx.

Here I have desuppressed all involved minus signs, see footnote 6. For N = 0
this is

Ltotal = (θ∗(−∆)θ − Ξ + ψ̄iD/ ψ +
1

4
|R|2 −Ricci)√gdDx,

again with all minus signs desuppressed. Of course we have here assumed
that the graviton and Weyl fermion have the same color gauge group U(N).
For the other, but still very interesting, case that the Weyl fermion has color
gauge group U(N) while the graviton has no color gauge group at all the
Lagrangean becomes

Ltotal = (θ∗(−∆)θ − Ξ + ψ̄iD/ ψ +
1

4
|R+ F |2 −Ricci)√gdDx.

All of these Lagrangeans are before normalization, and before division by
the factor 2 that gives better Feynman rules, as in remark 5.10.

11. Appendix 5; The Lagrangean for The Simplified Theory

The Lagrangean could be described, ex normalization, by

Ltotal,simplified = (|D/ θ|2 + ψ̄iD/ ψ +
1

4
|R+ F |2)h

√
hdDx.

Here h is a �xed background metric. This theory has the property that the
equation of motion derived by variation of the dynamical vielbein over a �xed
background, for say hµν := ηµν a �at background, is the usual �rst Cartan
structure equation with color, for the situation with no torsion. Thus this
becomes

dθ + (ω +A) ∧ θ = T = 0.

This theory is a CFT in D = 4, and could give a 'accurate enough' theory
for particle physics, without going into if it is a correct theory or not. This
Lagrangean is before division with a factor 2 that gives better Feynman rules
as in remark 5.10.
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12. Appendix 6; The Dimensionless Coupling Constant

We de�ne

g :=
√

4πGsM0,

M0 a fundamental mass, and s ∈ N/2 a half integer spin parameter. This
coupling constant enters the calculations by setting

Tα 7→ gTα.

More generally

ω 7→ gω.

13. Appendix 7; The Colored Vielbein

The colored vielbein can be described by

θ := [θa ⊗ |i >].

Here θa is the usual vielbein of Cartan's formalism, and |i >, i ∈ {1, · · · , N},
are ON basis sections on a complex vector bundle over space-time, the �ber
being the module for the de�ning representation of U(N).

14. Conclusions and future directions

Let us comment on the fully non-linear theory. This Lagrangean(density)
or theory must be thoroughly investigated without ad hoc assumptions, such
as remark 5.5 and 5.6. I believe that this theory may be correct or a at least
is a good start, so far, but it probably has to be checked via computer
software since the calculations are so tedious in the general situation. I do
not make any pretense at having done exhaustive calculations or proofs, I
am just proposing a theory. Also, it is not at all trivial if gravity can be
described by vielbeins, after all the ON-connection is not at all the Levi-
Cevita connection, one should not confuse one for the other, so here is a
ad hoc assumption. I expect drastic simpli�cations for the particle physics
scenario of a background �eld expansion around �at RD , D = 4, and that is
a good and motivated direction of future research. This theory has siblings in
the literature, such as in Polchinski[17], and Witten et al [8]. The di�erence
is the Einstein interaction term that does not have to be added, and comes
naturally, and that it lives in dimension 4, in fact all dimensions. I also think
that the simpli�ed linear theory should be thoroughly investigated since it
is a obvious CFT only in D = 4. Also, it would be very good if someone, a
representation theorist, could look a little closer at gauge-gravity for vielbeins
θ and spinor Dirac �elds ψ in these theories. The relation between the
simpli�ed theory and the non-linear theory has to be investigated explictly.
Speci�cally I would like to have a proof of that the simpli�ed theory is a
approximation to the non-linear theory.
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