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A BRIEF REMARK ON NEW FORMULAE FOR STRING

AND BRANE THEORY CORRELATORS

E.B. TORBRAND DHRIF

Abstract. This is a article describing String Theory correlators, more
speci�cally Green's functions on compact Riemann surfaces of any genus.
The calculus becomes much simpler, without necessary reference to Eis-
tenstein functions or similar formulae in terms of theta-functions. We
also grasp towards brane theory correlators, brane Greens functions and
brane Sezgo kernals.
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1. New Formulae for String and Brane Theory Correlators

This paper will be very brief. Firstly I state that the Laplacian problem
on a compact Riemann surface is readily obtainable from the parabolic heat
problem. Then, I conjecture the Green's function of the heat problem on a
compact Riemann surface of genus g to be given by

G = G+G−

G± =
∑
n∈Zg

e−n
tΩ±nse2πint(x±−x′±)

where x±, x
′
±, are of dimension g, x± ∈ [0, 1]g, x′± ∈ [0, 1]g, where g is

the genus. Ω is the Schottky matrix, also called the moduli matrix, in
conventions such that Re(Ω) > 0 and s ∈ [0,+∞) both a time and Schottky
parameter.

Noticing the formula

1

∆
=

∫ ∞
0

e−∆sds

where

∆ = −
∑
i

∂2
i

we get

D =
1

∆
=

∫ ∞
0

e−∆sds =

∫ ∞
0

Gds

Performing the integral one obtains the result;

D =
∑

(n,m)∈Z2g

1

(n,m)t(Ω+ ⊕ Ω−)(n,m)
e2πi(n,m)t(x+−x′+,x−−x′−)

Then the Sezgo kernal is then given by

S∓ = ∂±D

Now, this gives a lot of elliptic function theory, for example the Eisenstein
function E would be approximately given by

E[Ω] = E(x− x′)[Ω] ∼ e2πD

/
These expressions have the advantage that they generalize to branes quite

easily, but we may doubt their validity. Those formulae look like, in dimen-
sion m, and with p number of patches,

D =
∑

(n1,··· ,nm)∈Zpm

1

(n1, · · · , nm)t(Ω)(n1, · · · , nm)
e2πi(n1,··· ,nm)t(x1,··· ,xm),

where xi ∈ [0, 1]p. We recognize immediately that even this is a quite
general function that occurs in Eisenstein theory. The Dirac or Sezgo kernal
is then given by
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S =
1

∂/
= ∂/

1

∂/ 2
= ∂/

1

∆
= ∂/ D

Then understood that ∂/ denotes the realization of the Dirac operator on
each patch of the p number of patches or charts. If you now use Wick's
theorem on correlators with the above propagators you are done.

Remark 1.1. For Einstein branes, also called E-branes, we can always
choose a local di�eomorphism, basically a coordinate chart or gauge homo-
topic to the identity, that that makes the Laplacian a constant coe�cient
operator, just like for Riemann surfaces 1. An Einstein brane is a brane
that follows the Einstein �eld equation with source term and has no gravi-
tational anomaly. This is not necessarily a black brane, it's more general.
This makes the above heat kernels, Green functions and Sezgo kernals work.
Basically E-branes have a very simplifying situation. See Torbrand-Dhrif[7].
The MCG( mapping class group) can then be quotiented away just like the
case for strings, except we now work with branes.

2. Topological transitions

We note that the manifold above need not be connected, so it's Hilbert
space is a direct sum of the L2 Hilbert spaces of the appropriate connected
parts or manifolds. This means that the above formula decribes a totality of
topological dynamics between independent branes of �xed topology. Now,
the S-matrix of such a collection of branes with di�erent topologies need be
unitary over all channels, so that it preserves probability on the total Hilbert
space of the S-matrix. That's like saying that there is a probability of 1 that
something will be an out state. I think, but I am not sure, that the descrip-
tion above takes care of the entire E-brane setting of brane dynamics. To be
clear; I think that the above may give a simpler and correct representation
of correlators on brane sheets for the speci�c case of Einstein branes, but I
am not sure.
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