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1. Abstract

In this paper we compute the risk neutral intensity, hence probabil-
ities(risk neutral and physical), for a stock crash occurrence. We also
give the solution of the American call option in a perpetual defaultable
setting. The values of perpetual American calls in a defaultable set-
ting are also computed for two standard models, and this is a model
for implied default intensity.

2. On The Probability of a Stock Crash and The

Perpetual American Call in a Defaultable Setting

Intensity based models are common in the litterature, see e.g. P.J.
Schonbucher[7], Du�e and Singelton[3] or Cossin and Pirotte[2]. Usu-
ally these models are investigated via stochastic methods, something
that we in the present paper defer from doing, instead reducing these
models to a free boundary PDE approach. This results in a formula
for the default intensity of a stock market, something that we see as
characterizing the probability of a crash on such an exchange. A stock
crash is characterized here in the beginning of the article by that no
company in the given sector we investigate can honor all of its com-
mitments. Later we make an ansatz at a more re�ned de�nition.

3. The Black-Scholes Model

We assume that the underlying variable( the stock market capital-
ization) follows a one-dimensional geometric Brownian motion. Thus
we have that

Hypothesis 3.1.

dXt = rXtdt + σXtdBt

where Bt is Brownian motion, r is the short rate and σ is the volatility
of Xt, de�ned here by σ(x, t)2X2

t dt = V ar(dXt). The relevant probabil-
ity space (Ω,F , (Fs)t≤s≤T , P ) is as follows: It is the canonical Wiener
space where Ω is the space of continuous functions C([t, T ], R), (F0

s )
is the �ltration generated by the coordinate process Bt(ω), ω ∈ Ω, P is
Wiener measure on F0

T , F is the P -completion of F0
T ,and for each s,

Fs is F0
s completed with the null sets of F .

Here we have also

Hypothesis 3.2. r ≥ 0, f ≥ 0.

The defaultable Black-Scholes equation, is then
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(∂t +
σ2x2

2
∂2

x + rx∂x)F (t, x) = (r + f)F (t, x)

F (T, x) = g(x).

on the domain t ∈ [0, T ], x ∈ R+, see Du�e(1996), section F, Chapter
5, and BjÃ¶rk(1998), Proposition 10.5. We also assume the following
hypothesis:

Hypothesis 3.3. Here g(x) is at most of polynomial growth and is
continuous. The solution is required to be C1(it only depends on space
in view of perpetuality) on the interior of the domain.

4. Main Results

We begin by stating the solution to the perpetual American call
problem.

Proposition 4.1. The value of a perpetual American call with strike
K > 0 is given by

F (x) = (b−K)(
x

b
)α1

b =
Kα1

α1 − 1

α1 =
1

σ2
(−(r − σ2

2
) +

√
(r + σ2/2)2 + 2σ2f).

Here b is the optimal stopping boundary.

Proof. Here is a constructive proof. This perpetual American call op-
tion problem can be characterized by the following free boundary value
problem, where smooth �t gives the boundary:

(
σ2x2

2
∂2

x + rx∂x)F (x) = (r + f)F (x)

F (b) = (K − b)+

(∂xF )(b) = 1

Here we require the solution to be bounded at the origin. Solving this
Euler type di�erential equation with an Euler ansatz F = C1x

α1+C2x
α2

and discrading the singular term at the origin that comes from the
negative root of the indicial equation we obtain the solution. �

It is worth while noting that when we have small default intensities
we can extract revealing asymptotic behaviour.
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Corollary 4.1. As f tends to zero we have

b ∼ K(
r + σ2/2 + f

f
)

α1 ∼ 1 +
f

r + σ2

2

From these last asymptotics we see that the value of the optimal
exercise boundary becomes bigger and bigger in stock space as the
default probability goes to zero.
Let us use the following model to simulate a stock market:

• The investors have debts, to �nance their investments, with face
value of debt K and present value of debt D determined by the
market.

• The value of this market, say the Swedish �nancial markets, can
be modelled by a contract function g = (x − K)+ where x is
the total capitalization of the market. This contract is subject
to default of a possibly larger market and can be excercised
at any time(this latter feature is a drastic simpli�cation, in
reality it can only be partially excercised). Absolute priority
holds in this stock market so debt holders are reimbursed before
stock holders receive their gains. We also assume that debts are
constant over time.

• Markets are frictionless, so there are no transaction costs or
taxes. Asset values are continuous as opposed to discrete and
are traded continuously.

• Shorting of assets is allowed, and bid-ask spreads are null. Fur-
thermore lending rates are equal to borrowing rates.

• There is a bank account whose rate of return is known.
• The stock market capitalization follows a geometric Brownian
motion as speci�ed above.

• Management acts in a way to maximize company/shareholder
value.

• There are no dividends. This is a simplifying assumption and
can possibly lead to inconsistencies over an in�nite time horizon,
but is remedied by the substitution r := r− δ, f := f + δ where
δ models the dividends.

• Default of this stock market( or rather submarket), which we
say is a stock crash,is an abstract event which implies that no
company in this subsector honors its commitments. Our model
only investigates this submarket. We assume that the commit-
ments must be honored at some �nite time so that the optimal
stopping time pertaining to the problem is a.s. �nite. Default
of one company correlates perfectly with default of other com-
panies since they are assumed to be of roughly the same kind(
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this is a feature that gives a robustness of the model but is also
a drastic simpli�cation).

Under these assumptions we directly obtain the following corollary

Corollary 4.2. The default intensity is given implicitly, i.e is backed
out by

F (f, K, r, σ) = x−D

for any x ≥ D and constant rates and volatilities. This means that one
inverts the formula for a given market value, face value debt K, rate
r, volatility σ, and present debt value D.

Remark 4.1. The existence of indices makes the ascertainment of the
model volatility relatively easy.

Assume instead that we model the value with a square-root CEV
model, thus modeling

dXt = (rXt)dt + σ
√

XtdBt.

The solution to the appropriate free boundary problem can then
be obtained by a Frobeinus expansion as a linear superposition of the
functions pi = xλi

∑
m≥0 ai,mxm, i ∈ {1, 2} where ai,0 = 1.

λ1 = 1, λ2 = 0, ai,m+1 = − 2(r(λi + m)− (r + f)

σ2(λi + m + 1)(λi + m)
The function p2 is discarded since it is non-zero at the origin, but is
interesting to model a put. Thus F = ap1(x), where a = (b−K)/p1(b).
b > K is then numerically solved for by solving F ′(b) = ap′1(x) = 1 (
this is usually di�cult to solve analytically as this requires �nding the
roots of a polynomial of degree higher than four.)

Example 4.1. If we set the value of the parameters at x = 10MSEK,
σ = 0.3, r = 0.03, K = 4.5MSEK, D := 1MSEK we obtain a default
intensity of f = 0.00212. We are calculating the default intensity of
the company from the shareholders perspective, so decreased debt leads
to decreased intensity. This is counterintuitive at �rst glance, but is
correct once we recognize that the debt valued on the 'wrong' side, that
is on the debt-holders side. The debt from the debt markets perspective
is 4.5 ∗ 4.5 = 20.25 in the above example.

Example 4.2. We may want to try the Ericsson company as a trial
of our default model. Ericsson had big �nancial problems during 2001-
2002 and remedied these problems later. This should show in the default
probability. Indeed, we have with data taken from the annual reviews
that f = 0.01 for may 2005 where as f = 0.16 for september-october
2002. Thus the 1-year default probability was roughly 16% for Ericsson
at it worst and below the percent in may 2005. The data taken was
15860 ∗ 106 = (15164+656) ∗ 106 stocks, where the latter sum indicates
A and B shares. The face value of long-term debt was 97460MSEK in
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2002, and 33643MSEK in 2005. The annual volatiltiy calculated on
a 60-day basis was set to 0.3 in may 2005 and 1.4 in 2002, the latter
di�ering drastically from the 10-day volatility peak of 2.1. All stock was
approximated to behave as B-stock and the values were approxiamted to
3.6SEK in 2002 and 23SEK in 2005. The credit asymmetry between
face value and debt-holders value was assumed given by standard credit
rating agencies as 0.95.
The data above should be compared with the default probabilities given

by credit agencies, such as such as Moody's and Standard and Poor.
The Moodys credit rating of Ericsson was Ba2 in both 2002 and 2004.
The Standard and Poor rating was BB+ at the end of 2004 and BB at
the end of 2002.

4.1. Physical versus Risk-neutral probabilities. We have from a
standard Girsanov transformation the following formula for the physi-
cal probability of default:

pphysical = 1− Et,x(e−
R T

t f(s,Xs)dsD(t, ω))/Et,x(D(t, ω))

D(t, ω) = e−
R T

t θ(s)2/2ds+
R T

t θ(s)dBs ,

θ(t) = −(µ(t,Xt)− r(t,Xt))/σ(t,Xt)

prisk−neutral = 1− Et,x(e−
R T

t f(s,Xs)ds)

5. A Multinomial Model of Stock-crash Occurences

In this section we present a model that rede�nes the concept of a
stock-crash. The substitution is simple, we de�ne for each company a
implied risk-neutral stock crash intensity fi := f for Xi := Xcompany,i,
and compute the physical default probability for each company. The
number of stock crashes follows then a multinomial distribution. The
partition function is given by

Z :=
n∏
1

(pi + qi)

where

pphysical,i = 1− Et,x(e−
R T

t fi(s,X
i
s)dsD(t, ω))/Et,x(D(t, ω)),

D(t, ω) = e−
R T

t
θi(s)

2

2
ds+

R T
t θi(s)dBs

θi(t) = −(µ(t,X i
t)− r(t,X i

t))/σi(t,X
i
t)

prisk−neutral,i = 1− Et,x(e−
R T

t fi(s,X
i
s)ds).

Here either pi is the risk-neutral or physical probability of default of
the company i given above. The model above should be at its peak of
accuracy when fi is computed with �nite maturity since this is a more
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realistic setting, but our model gives an ansatz for a better de�nition
of default probability.

Example 5.1. This time we investigate the risk-neutral default proba-
bility space of ABB, Ericsson and Alfa Laval at May 2005. From data
taken from annual reports and stock exchange time series we obtain the
following table:

ERIC/ALFA Company survives Company defaults
Company survives 0.9603 0.0097
Company defaults 0.0297 0.0003

ERIC/ABB Company survives Company defaults
Company survives 0.98505 0.00995
Company defaults 0.00495 0.000005

ALFA/ABB Company survives Company defaults
Company survives 0.96515 0.02985
Company defaults 0.00485 0.00015

From these tables we see that diversi�cation of credit risk is a good
way to keep extreme events from happening too often. This of course
assumes zero correlation for the moment.

6. A Multinomial Model of Stock-Crash Occurences

Incorporating Correlation of Default

De�ning the partition function(we now use multidimensional Brown-
ian motion to model the stock market and ω is the path of the Brownian
motion)

Z(t, ω) :=
n∏
1

(pi(t, ω) + qi(t, ω))

with pi(t, ω) = 1 − e−
R T

t fi(s,X
i
s)ds, qi(tω) = 1 − pi(t, ω) we get the

probability of the individual defaults from the integrated monomials in
pi and qi the expansion

1 = Zt,x = E(Z(t, ω)D)/E(D).

Since the expectation of the Doleans exponential is E(D) = 1 by stan-
dard Ito calculus we see directly that the individual default event prob-
abilities are given by

event = E(ε1(t, ω)ε2(t, ω) · · · εn−1(t, ω)εn(t�ω)D).

where εi is either pi(t, ω) or qi(t, ω) depending on the event. Explicitly
we have with Fi =

∫ T

t
fi(xi, s)ds that ∂xi

FiσiC
i,j∂xj

Fjσj is the in�tisi-
mal covariance between intensities, where Ci,j is the covariance matrix
of the Browninan motions, and this can be used to evaluate the terms
in the partition function above. i.e this gives with qi = e−Fi that:
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qiqj = e−Fie−Fj = 1− Fi − Fj +

∫ T

t

∂xi
FiσiC

i,j∂xj
Fjσjds

In the above matrix of default intensities and probablities (Exam-
ple 5.1) we have not included correlation, and the above formula or
partition function is how to include this.
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