SUPERHEDGING, CLASSIFICATION AND MONOTONICITY OF
CONTINGENT CLAIMS WITH LEVEL AND TIME DEPENDENT
VOLATILITY, DRIFT AND RATE

E. B. TORBRAND DHRIF

AsTrACT. In this paper we show results on monotonicity and generalised greeks in rate,
volatility and other parameter functions for options on both traded and non traded under-
lyings. This leads to a classification theory of options in terms of the contract function.
We cover the cases of European, Barrier(knock-out), American, some Asian options as
well as credit risky options. We also study options in incomplete markets. We charac-
terize monotonicity in rate and volatility for European options up to logical equivalence
as a condition on the contract function, something that yields a classification of options
in call-like, put-like and options which are neither. Stochastic diffusions are assumed to
drive the underlying through both time and space dependent drift and volatility under the
martingale measure. Applications of these monotonicity results include superhedging and
statistical arbitrage and the results are exhaustive in the Markovian setting on the sign of
generalised greeks for the contingent claims mentioned.

1. PAPER 1: MONOTONICITY OF THE BLACK-SCHOLES FUNCTIONAL

Since the discovery of the Black-Scholes equation numerous people have tried to prove various
results concerning its properties. El Karoui et. al 1998 and Bergman et. al. 1996 showed
that the Black-Scholes equation possesses a monotonicity in volatility function, thus generalizing
the constant volatility of geometric Brownian motion to level and time dependent volatility by
still having the same nice monotonicity properties as the standard Black-Scholes model which
assumes constant rates and volatility. Bergman and others also showed a monotonicity property
of European calls under upwards shifts in the term structure. These researchers seem to have
been motivated in this pursuit by previous work by Merton(1973) and Jagannathan(1984) among
other things showing that a call options price is an increasing, convex function of the current
stock price. Cox & Ross(1976) showed that the price function of any European contingent claim
inherits properties of the contract function, such as monotonicity.

In this paper we use the differential calculus of non-linear functionals as an alternative to the
PDE approach. Both approaches are in other words taken below.

We are considering monotonicity properties since this is connected to hedging. If a option
writer is mis-specifying the volatility by some positive function for hedging purposes and the value
funtional of some contract is convex in stock space, it is then known that the issuing company
will have overestimated what it will owe. Same kind of reasoning holds if it mis-specifies the rate.
If the rate function that it uses is strictly bigger then it will have overestimated the value of an
outstanding call and created a super-hedge if we have a call-like’ contract. However, this has
hithereto only been proved for deterministic rates and simple European call options.

The reasons for focusing on time and level dependent rates and volatilities are threefold. Firstly
the case of deterministic rates has already been more or less exhausted. Secondly it is not incon-
ceivable to model a rate as dependent on an underlying variable such as the debt over value ratio
of a company or a stock index through a function. That the short rate of debt is dependent on the
relative quantity of debt is due to matters such as default and counterparty risk in general and
it is well known from elementary finance that there is a non-trivial interdependence between the
evolution of stock markets and the behaviour of rates, although the nature of these dependencies
is non-trivial. This is due e.g. to central bank incentive to stimulate an economy and lending as
well as the amount of risk capital available to financial institutions, which has a positive corre-
lation with positive evolution on stock markets. Thirdly, a common type of models in interest
rate modelling are the so called affine ones, which typically result in rates that are functions of
the underlying variables. The variables are called factors in interest rate theory. The special case
with only one factor except for time is our situation.

As a bonus we obtain new proofs of old results as well as precise expressions for the difference
between the value of an option for two different values in the infinite dimensional parameter space
generated by volatilities and rates.

IThis concept is a notion created by the author together with the concept put-like.
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2. THE BLACK-SCHOLES MODEL

We assume that the underlying stock or variable follows a one-dimensional stochastic diffusion
under a martingale measure. Thus we have that

Hypothesis 2.1.
dX; = (/,L(t, Xt) — >\0’(t, Xt))Xtdt + O'(t, Xt)XtdBt

where Bt is Brownian motion, p is physical drift of X¢ and o is the volatility of X¢. X is
a continuous function called the market price of volatility risk. The relevant probability space
(Q, F,(Fs)i<s<T, P) is as follows: It is the canonical Wiener space where Q is the space of
continuous functions C([t, T],R), (F9) is the filtration generated by the coordinate process Bi(w),
w € Q, P is Wiener measure on ]-'%, F is the P-completion of F%,and for each s, Fs is F?
completed with the null sets of F.

Here we have also

Hypothesis 2.2. o u(t,x) — A, z)o(t,z) € R and o(t,z) > 0 are Lipschitz.

e o is square integrable a.s when integrated versus the Lebesgue measure on the time inter-
val [0, T], Du and p — Ao is likewise integrable a.s when integrated versus Du. We drop
this condition when considering credit risky options since we then explictly allow stock
default.

e Both (u(t,z) — A(t,z)o(t, x))z and o(t,z)x are at most asymptotically linear in growth
in the spatial variable:

1
lot,z)| +|p— Ao < M(1+-),M e R
x
e The rate r(t,z) is bounded and Lipschitz.

These last conditions inforce existence of a strong solution to the SDE(See Karatzas et al(
1988)., Definition 2.1 on page 285 and Theorem 2.9 on page 289). When the underlying is traded
we also use p(t,z) — A(t,z)o(t,z) > 0. Thus for the case with traded underlyings the rate r(t, z)
is greater than zero, r(¢,x) > 0.

The Black-Scholes equation is then

o(t, z)%z?

0
(0 + 2

2 + (u(t, z) — Xo(t, 2))zdz)F(t,x) = rF(t, x)
F(T,z) = g(z).

on the domain ¢t € [0,T],z € Ry, see Duffie(1996), section F, Chapter 5, and Bjork(1998),
Proposition 10.5. We also assume the following hypothesis:

Hypothesis 2.3. Here g(z) is at most of polynomial growth and is continuous. The solution is
required to be C*1 on the interior of the domain.

Since for a traded underlying we have A = (u — r)/o for the price of volatility risk, the Black-

Scholes equation reduces to

o(t,z)%x? _,
faz + r(t,x)x02)F(t,z) = r(t, z)F(t, x)

F(T,z) = g(z).

(0r +

That is the case we shall first consider. Later we shall consider the case A an independent parameter
function, which arises in incomplete markets such as interest rate (IR) markets. Also, we have
chosen to list our assumptions about credit risk derivatives later in the appropriate section since
we then allow other features than above.

We shall use something called time ordered products to represent the Feynman-Kac solution
to the Black-Scholes equation. The conditions that we have imposed on the SDE and the data
g(z) at t = T guarantees the existence of such a solution, so this is relevant to our situation. We
define the time ordered product to be the operator 7 that arranges products of operators that are
at different times so that they are in time decreasing order from right to left. As some examples
we thus have

Example 2.1. Let O(t) be a family of operators indexed by t in some one-dimensional time
continuum. Then

TIO(t = 3)O(t = 5)O(t = 2)]
= Ot = 2)O(t = 3)O(t = 5)
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We can represent the time ordering of two operators at different times by use of a Heaviside
function 6.

TO@®Ot)

= 0Ot —t) +O"HO®)o(t —t')
This has natural generalizations in terms of characteristic functions of hypertriangles for products
of higher degrees. For operators at equal times the time ordering is defined by the normalized

totally symmetric function of the operators. We give a further example that is more close to the
applications we have in mind.

Definition 2.1. We define

o(t, z)%x?

L= 32 4 (u— Ao)xdy — r(t, )

This definition holds throughout the paper. Note that for the case of traded underlyings this

reduces to

o(t, x)’x

2
L= 2 2 4+ r(t,x)zdy — r(t, x)

Example 2.2.
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Since the space of equal times in each multidimensional integration is a Lebesgue null set we
also note that under some regularity assumptions we need not bother about time ordering at equal
times for expressions such as the above.We give an example of the use of time ordering operators:

Theorem 2.1. A solution to the Black-Scholes equation with C*° last value data and null bound-
ary conditions is then given by

L(t)dt)"

_ JT c(t)at _ = (ftT
F(t,x) =Tlelt JF(T,2) =T[Y l9(@)
0

n!

For continuous last value data we define the solution by successive approrimation in the domain
of the partial differential operator by C° functions.

Proof. We have
B Tlelt COU) (T, z)
= () Lydnn

=0Ty

0
T[—L(t)el’ LMt g(q)
—L(t)T[e LM g(a)

We note also that the expression above satisfies the appropriate terminal data. Hence the expres-
sion satisfies the equation. When the last value data is only continuous the successive approxi-
mation procedure defines a unique solution by using the Hadamard property of the PDE( see the
appendix for the Hadamard property).

In fact the expression above is the operator representation of the Feynman-Kac solution.See
Peskin et al. (1997) 0O

lg(z)

n!

In the following we define § as the exterior (Frechet) differential on the Hilbert space L2([0, T] x
Q,dt x dz) viewed as a Hilbert manifold of trivial homotopy type- i.e a contractible infinite
dimensional manifold. For the calculus of variation, something that we will lean on later, see
the two volume treatise on physical mathematics by Yvonne Choquet-Bruhat and Cecile DeWitt-
Morette called Analysis, Manifolds and Physics(1999). The chapter differential calculus on Banach
spaces, pages 71-109,is the most relevant to our discussion, in particular the (standard) definition
on page 71 of the Frechet derivative. The material on Banach manifolds is also interesting and is
addressed in pages 504-601. We assume the reader to be familiar with the basics of such analysis,
at least in the finite dimensional case.

Definition 2.2. A Banach Manifold is a topological space locally homemorphic to a Banach
space, i.e locally homemorphic to a complete normed space.
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Definition 2.8. The Frechet differential of a functional F(p) at p on a Banach space X is defined
as the linear functional DF' satisfying

F(p+ h) — F(p) = DF(h) + o(h)

where p € X, h € X. Here o(h) = R(h)||h||x where R is a bounded functional in a neighbourhood
of the origin and || - ||x is the norm on X.

The exterior Frechet differential is defined in any local chart defined by a local homemorphism
as the Frechet differential ) dp® A DF. acting on sections of the exterior cotangent bundle
of the Banach manifold in question. Here A is the wedge or exterior product defined by total
antisymmetrization of tensors.We also use A as the minimum of two quantities later, but the
contexts are quite different so this should not cause any confusion.
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3. TuE MaIN THEOREM

We are now ready to prove

Theorem 3.1 (Main Theorem). Assume that the Black-Scholes functional is continuously Frechet
differentiable and that we have null boundary conditions. We have that AF is either positive
semidefinite or negative semidefinite,i.e

PI=T1Xp1 X001 XA
/5F:/ 0F =F(p1) — F(po) =AF >0
Yy P

0=T0X [0 X0T0 X A0
or

PI=T1Xp1 X001 XA
/5F:/ 0F =F(p1) — F(po) =AF <0
Yy P

0=T0X [0 X0T0 X A0

for all p1 in the path v =< po, p2 >, where p1 > po> if and only if the sign of

o) £ £(s)

9p*(x) op*
is of one type-either positive semidefinite or negative semidefinite respectively. Here p*(x) =
p(s,x), s € [t,T]. We use p* = p*(x) as coordinates on our Banach manifold L2([0,T] x R4, ds x
dz), so p1 and po only differ by a square integrable perturbation.

F(57$=P)|p€w = F(vaap)IPE’Y

Proof. We use the operator representation of the Feynman-Kac solution. We have

§F(t,z) = 6T[e) £1F(T, z)

T T
:T[(J/t L)ele £1F(T, z)

T S T
:T[(/t OL(S) 5 s ds)el i LR (T, 2)
L(s)

ops
T o
= T
/t e

In the above we used the composite mapping theorem for Frechet derivatives, see page 73, Choquet-
Bruhat et al(1971), as well as differentiation under the integral sign, which we can do since we
have a finite measure space and the integrand is differentiable. Considering the component partial
(Frechet) derivatives we have

)eftT L1F(T, z)8p° ds

OF (t,x)
aps
= TS 1)
p
= T[efts ££(S)efsT £1F(T, z)
op*

=Tlelt 5]857(:)F(s,z)
o

This last expression is positive semi definite or negative definite at all ¢ if and only if

or

s F(s,z) <0

since the Black-Scholes equation preserves signs of contracts. That this preservation of signs we
now used occurs for parabolic PDE of second order is obvious in view of the stochastic represen-
tation of the solution. Hence going to bigger p® = p(s,z) we have

T < . OL(s)
= el L1220 p(s, x)dp® ds
[or= [ [Tl % PE e mdetas = 0

2Here we define p1 > po when the component functions in the cartesian product p; = r1 X pu1 X 01 X Ag
dominate the component functions in pg = rg X pug Xog X Ag, i.e.ifand only if 1 > r0, u1 > po, 01 > oo, A1 > Ag.
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or

T < 2 OL(s)
= el L s,x)dp®ds
Jor= [ [T % PE e mdetas <o

We also have the converse, since definiteness of continuous integrand on an arbitrary domain is
equivalent to definiteness of the integral over arbitrary domains( That the integrand is continuous
follows by continuous Frechet differentiability.). O

Let p be as above a parametrization of a path in rate, drift, market price of risk and volatility
space going in increasing direction,( i.e going away from the origin if the path is embeddable in
L? or in the general case just e.g. going to higher volatility or rate).

Theorem 3.2 (Main theorem II, PDE version). Assume that F(t,z, p) satisfies the Black-Scholes
equation

(0 + L(p))F'(t,z,p) =0
F(T,z,p) = g(z).
for different parameter values p, and that the associated operator L is partial differentiable
in p. Assume furthermore Hypothesis 2.3 and either 1) Hypothesis 2.2 or that 2) the pertaining

SDE diffusion is absorbing at x = 0 as well as that the contract function is vanishing at the
boundary. We have, going in the direction of increasing parameter functions,

AF =F(p2) — F(p1) > 0
or
AF = F(p2) — F(p1) <0
if and only if
OpLF >0
or
OpLF <0
respectively. Here the derivative 0, is a usual partial derivative.

Proof. Subtracting one of the Black-Scholes equations
(Oc + L(p1)F(t,,p1) =0
F(T,z,p1) = g().
from the other Black-Scholes equation
(9% + L(p2)) F(t, 2, p2) = 0
F(T,, p2) = g(x).
we obtain for products from AFG = (AF)G(p2) + F(p1)AG and linearity

0= (81 + ﬁ(pl))AF + ALF(p2)
Since AF satisfies null last value data (the boundary value data are the difference between the
boundary value data for the two different problems) the solution is given by a Feynman-Kac
representation (See Karatzas and Shreve(1991), Theorem 7.6. for a version on R™.) as

T ;
AF = E/ e~ JErwXndunr Pt X, po)ds,
t
This is seen since the term
T )
/ p(t,z,s =Tp)e” Ji r(wr=0)AF(s,0)ds
t

vanishes when either the boundary is almost surely not reached, which is among other things
implied by Hypothesis 2.2, or when the contract function is zero at the boundary and the boundary
is absorbing.( Here 7 is the stopping time for reaching the boundary at = = 0.) This is so in the
first case since ,

Xio = zelo (r—%)ds+ [§ odBs

and the conditions of a.s integrability in Hypothesis 2.2 mean that the exponential is finite almost
surely, hence X # 0 almost surely. The second case with absorbing boundary means that AF =0
since Ag(z = 0) = 0. Thus in view of this Feynman-Kac representation we conclude sufficiency
by linearity. In as far as necessity note (AL)F = (Apg—ﬁ)FJr O((Ap)?). Tt is crucial to note that
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the error term O((Ap)?), denoting a multiple of a bounded function in p-space with the obvious
monomial (Ap)2, can be neglected by the Hadamard property. If we thus choose a very small Ap
that has suppAp C OSS where OSS denotes the set where OSS denotes the opposite sign set of
OpLF we obtain a AF of the opposite sign by linearity of the Feynman-Kac representation. This
can happen only if OSS is not the empty set, hence we are done. O

Example 3.1. Set p® = o(s,z),s0 that we are fizing the remaining infinite dimensional param-
eters and are going in path v of increasing volatilities. Assume we are dealing with o traded
underlying . Then
(Bps L(s,2))F(s,x) = 0?92 F (s, z)

which is positive semidefinite if and only if O2F > 0, i.e that the contract is convexr and that
pertaining equation preserves convezity. Here we implicitly assumed the contract to be C?. By
Hadamard well posedness- of the Black-Scholes equation we have that approximating a conver
contract function by C°° functions we will approzimate the solution arbitrarily well. Hence this is
true for arbitrary convex contract functions preserved in convezity by the Black-Scholes equation.
See the appendices for proof of Hadamard well-posedness of the Black-Scholes equation.

Thus in view of the above example we have proved the following theorem

Theorem 3.3. Assume that we are given the Black-Scholes equation for a traded underlying
asset and level and time dependent rates and volatilities. Then if the Black Scholes functional
is continuously Frechet diffrentiable we have that it is increasing in volatility if and only if the
contract function is convexr and the Black-Scholes equation preserves convexity.

Thus we directly note the corollary

Corollary 3.1. Assume that we are given the Black-Scholes equation for a traded underlying
asset and level and time dependent volatilities and only time dependent rates. Then if the Black
Scholes functional is continuously Frechet differentiable we have that it is increasing in volatility
if and only if the contract function is convexz.

Proof. That the Black-Scholes equation preserves convexity for deterministic rates is well known.

O

Our proof of the corollary above is simpler than the usual. We do not give an example of this
corollary since it is well known to hold, see e.g. Bergman et al.(1996).

Assumption 3.1. We assume henceforth whenever we use Main Theorem I that all Black-
Scholes functionals we consider are continuously Frechet differentiable so that it applies. As an
alternative when we use Main Theorem II we may assume that the differential operator generating
the Black-Scholes equation is differentiable w.r.t p.

Assumption 3.2. We shall also always assume that we are dealing with Lebesgue square inte-
grable perturbations of the parameter functions when we use Main Theorem I. Our monotonicity
results thus only apply when the parameter functions differ by such a (positive semidefinite)
Lebesque square integrable function. However, when we use Main Theorem II this is not a nec-
essary assumption.

4. APPLICATIONS OF THE MAIN THEOREM

We begin with a lemma.

Lemma 4.1. Assume that we are studying an option on a traded asset with time and level
dependent rate r = r(¢,z) and volatility o = o(t, z) and continuous contract function g. Assume
sufficient conditions for Hadamard continuity as given in the appendiz. Assume also Hypothesis
2.1, 2.2 and 2.3. Then we also have

(20 —1)F <0
is equivalent to

(202 —1)g <0
meant in the sense of distributions for the general case of a continuous contract. The other
scenario also holds, again in the sense of distributions;

(20 —1)F >0
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is equivalent to
(20, —1)g >0

Proof. Assume first smooth coefficients in the Black-scholes PDE. Locally we have for the Black-
Scholes functional that the sign of the expression (xd; —1)g is conserved if and only if (z8z —1)Lg
is either positive or negative semidefinite. By using standard commutation relations for algebras
of differential operators, we get

(202 — 1)Lg = [0 — 1, L]g+ L(x0z — 1)g
E) 2
- %ﬁagg + (2027) (202 — 1)g + L (20, — 1)g.
However, noting 202 = 0, (20 — 1) we get
(20 — 1)Lg = [0z — 1, L]g+ L(z0z — 1)g

_ (x8m02

20z + x0pr)(x0s — 1)g + L(20z — 1)g

2002

=(
= K(20x — 1)g

Since K is obviously an elliptic operator the diffusion it generates preserves signs, hence we
are done proving sufficiency. By the Hadamard property we can approximate the solution for
continuous coefficients by solutions generated by approximating smooth coefficients, hence for an
approximating sequence of smoothe coefficients we get lim F,, = F uniformly and (20 —1)F, >0
or (zdy —1)Fy < 0 holds, thus we are done since either lim(xd; —1)Fy, > 0 or lim(x8; —1)F, < 0,
were the limit is pointwise. Necessity on the other hand is obvious in view of that g is the restriction
of F to timet=T. O

20z + (20z1) + L) (202 — 1)g

Example 4.1. A call with strike K satisfies (x0z —1)g = K0(x—K) > 0 where 0 is the Heaviside
function. A Put on the other hand satisfies (x0r — 1)g = —KO(K — z) < 0. Puts and calls are
thus belonging to the two different cases mentioned above.

We also have the lemma

Lemma 4.2. Assume the Black-Scholes equation for a traded underlying and general time and
level dependent rates and volatilities. Assume furthermore Hypothesis 2.1,2.2 and 2.3. If (x0y —
1)F is either positive semidefinite or negative semidefinite, then and only then is it increasing or
decreasing in all rates respectively.

Proof. Since we have 0,L = 0L = x0r — 1 we are done by using the Main Theorem in either
version.

O

Theorem 4.1 (Main Theorem on Rate Monotonicity). Assume time and level dependent volatil-
ities and rates and contiuous contract functions as well as assuming Hypothesis 2.1,2.2 and 2.3.
We have that (0, —1)g < 0 in the sense of distributions is necessary and sufficient for an option
on a traded asset to be decreasing in rates. Likewise (x0z — 1)g > 0 in the sense of distributions
is necessary and sufficient for an option on a traded asset to be increasing in rates.

Proof. By Lemma 4.1, which states that (29, — 1)g < 0 is equivalent with (zd; — 1)F < 0 under
such circumstances, and Lemma 4.2 this is imminent. O

Remark 4.1. The assertions of the theorem above are also true for the case with absorbing
boundary and contract functions satisfying (x0z — 1)g > 0, since then the contract is vanishing
at the origin then. For example, any bounded volatilities and rates would yield such a case.
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We can reformulate the theorem for those who do not like to use distributions but are willing
to disallow the origin in stock space, i.e disallow default.

Example 4.2. Geometric brownian motion does not default almost surely. Neither do CEV(Constant
Elastisity of Variance) models described by

dX; = r Xidt + O'X?dBt

with r and o constant for o > 1/2.

Theorem 4.2 (Main Theorem on Rate Monotonicity). Assume time and level dependent volatil-
ities and rates and continuous contract functions and Hypothesis 2.1,2.2 and 2.3. We have that
g decreasing is necessary and sufficient for an option on a traded asset to be decreasing in rates.
Also % increasing is necessary and sufficient for an option on a traded asset to be increasing in
rates.

Proof. Since we have that the above conditions on £ are equivalent to either (z8; — 1)g < 0 or

(z0z — 1)g > 0 when the contract function is smooth we are done by using a successive smooth
uniform approximation of the contract function satisfying the appropriate inequality. O

Remark 4.2. The conclusion of the above theorem actually also holds under deterministic divi-
dends. This is seen by inspection of the proofs.

Remark 4.3. The property (0 — 1)g > 0 can be described by saying that the area under the
graph of the contract function always lies under a straight line from the origin ending on the
graph. Likewise, the case with (x0z — 1)g < 0 can be described by saying that a line from the
origin ending on the graph is always under the graph.

Definition 4.1. We call a option with a contract satisfying (xdz — 1)g > 0 a call-like option.
Conversely (x0z — 1)g < 0 defines a put-like option.

Remark 4.4 (The General Call and Put). Recall that a call satisfies (€0, —1)g = K6(z—K) > 0.
Thus a call is increasing in rates under our general assumptions about the form of time and level
dependent rate and volatility. Likewise the put is decreasing in rate by (x0; —1)g = —KO0(K —x) <
0. Since the condition (z0; —1)g > 0 generalizes the call and similarly for the put this motivates
the definition above. The theorem above thus says that a option is increasing in rate if and only
if it is a call-like option and decreasing in rate if and only if it is a put-like option.

Example 4.3. Consider a bond B(¢,T,xz) = F(t,z) for some deterministic constant rate r .
Then
OrF =—(T—-t)B(,T)<0

Hence we have a decreasing property in rate, just as required.

Example 4.4 (The Geometric Brownian Motion Put, Explicitly). Consider the standard Black-
Scholes model with geometric Brownian motion. Then for a standard European put F with strike
K we have, using the well known formula for the value of a call and put-call parity,

0 F =(T—t)Ke "T=Y(N(d2) —1) <0

do = ﬁ{/ln(x/K) +(r— ‘;:)(T -t}

Hence a put is decreasing in constant shifts of the rate, as should be by our theorem. Our theorem
applies to arbitrary non-constant upward shifts of the rate, so this is just a very specific case.
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Example 4.5 (The Geometric Brownian Motion Call, Explicitly). Consider the standard Black-
Scholes model with geometric Brownian motion. Then for a standard European call C(t,x) =
F(t,z) with strike K we have

0-C(t,z) = (T —t)Ke "T=YN(dy) >0

do = ﬁ{ln(x/K) +(r— ‘;:)(T -t}

Hence a call is increasing in constant shifts of the rate, as should be by our theorem above.

Theorem 4.3. Assume we are given a FEuropean option with convex and decreasing contract
function for integrable deterministic rates r(t). Assume that we consider a non-traded underlying
following a diffusion under some martingale measure given by an exogenously defined volatility
market price of risk \(t,z) > 0 and that the drift under the martingale measure is an affine
function, (u—oX)xz = a(t) +b(t)xz. Then the Black-Scholes functional is increasing in volatility.

Proof. Computing the relevant derivative we have for decreasing smooth approximations of the
contract function

Bps L(8)F = 8ps L(s)F = (02202 — 2205)F > 0.
Here we used that convexity of the contract function is inherited by F since the rate is deterministic
and the drift is affine, see S. Jansson and J. Tysk (2004). By Hadamard well-posedness, we are
done. O

Example 4.6. Consider a temperature modeled by geometric Brownian motion. Then for con-
stant rates we have for a put P on the temperature g(xz) = (K — x)t the following price in
temperature( P should be multiplied by a constant having units dollars per temperature to get the
usual price):

C(t,x) =z 2T N(dy) — Ke " T~ N(dy)
C(t,X) — P(t,z) = get=2o—(T=t) _ fre—m(T—1)

o2
di = U\/%{ln(x/l() + (u—Xo + ?)(T—t)},dg =di—ovVT -1t

Plotting this P in the volatility parameter we get the expected behaviour.

Theorem 4.4. Assume that we are given a FEuropean option on a mon-traded asset. If the
contract function g is decreasing and the rate is increasing in x, then the option is increasing in
the market price of risk A(¢t,z). On the other hand if the contract is increasing and the rate is
decreasing, then the option is decreasing in A(t,x).

Proof. We have, using the same reasoning as in the proof of Theorem 4.1, monotonicity of the
option by the conditions on rate and contract functions fixed above. The option is either decreasing
in the first case or increasing in the second case. Since for either increasing or decreasing smooth
approximations of the contract function we have

Ops L(S)F = Oxs L(s)F = =209, F >0
or
Ops L(S)F = Oxs L(s)F = —x00, F <0
respectively. We are now done by using the main theorem and Hadamard well-posedness. O

Example 4.7. For constant rates we have for the temperature put option in example 4.1, plotting
the X behaviour, what we expect. The graph is increasing.

Theorem 4.5. Assume that we are given a FEuropean option on a non-traded variable. If the
contract function g is decreasing and the rate is increasing in x, then the option is decreasing in
the physical drift u(t,z). On the other hand if the contract is increasing and the rate is decreasing,
then the option is increasing in u(t, x).
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Proof. We have, using the same reasoning as in the proof of Theorem 4.1, monotonicity of the
option by the conditions on rate and contract functions fixed above. The option is either decreasing
in the first case or increasing in the second case. Since for either increasing or decreasing smooth
approximations of the contract function we have

Ops L(S)F = Ous L(s)F = z0, F <0
or
Ops L(S)F = Ous L(s)F = z0, F > 0

respectively. We are done by using the main theorem and Hadamard well-posedness. O

Example 4.8. Plotting the temperature put above for increasing drifts we have a decreasing
behaviour in the value of the option. This is consistent with our theorem.

We can also investigate monotonicity properties under changes in volatility for options on
traded assets. Here is a theorem that attempts this.

Lemma 4.3. Assume that we are dealing with an option on a traded asset, smooth contracts
and Hypothesis 2.1,2.2 and 2.3. Assume furthermore that sufficient conditions for the Hadamard
property to hold as mentioned in the appendix. Assume that either the rate is spatially convex
and (xdz — 1)g > 0 or that the rate is spatially concave and (x0r — 1)g < 0. Then convezity of
the option price is equivalent to convexity of the contract.

Proof. We approximate the contract function with a smooth convex g and smooth coefficients
and try to prove sufficiency. We have using the same method of proof as in Lemma 4.1 that

2202(F(t — At) — F(t) =
Atz?O2LF(t) = At[2202, LIF(t) + AtL(z? 02 F (1))
= At((z8502 20y + 5128302 + 220,7)x282 F(t)
+ 2202r((28s — 1)F(t)) + AtL(x202)F ()
= AtKC(z292)F(t) + At(z20%r) ((xds — 1)F (1))

for the appropriate expression valued at time ¢t — At, At small and non-negative. The operator
K is second order elliptic, hence it preserves signs since it generates a diffusion which preserves
signs. The other term is positive by assumption by Lemma 4.1, hence we are done proving
sufficiency in the general case for continuous coefficients by using the Hadamard property under
approximation of coefficients. Necessity is obvious in view of the fact that g is the restriction of
F tot =T, thus we are done. O

In view of the above theorem, we have the following corollary immediately.

Theorem 4.6. A FEuropean option with smooth contract on a traded asset satisfying Hypothesis
2.1,2.2 and 2.3 is monotone in rate and increasing in volatility if and only if either (z8,—1)g > 0,
g is convez and the rate is convex in the spatial variable or (zdz — 1)g < 0, g is convex and the
rate is concave in the spatial variable. In the first case it is increasing in rate and the latter it is
decreasing in rate.

Proof. In view of Theorem 3.3 and Lemma 4.3 we are done proving in one direction. In as far
as the other direction, take a contract satisfying (zdz — 1)g = 1 then choosing a non-convex rate
we have a contradiction by the expression for preservation of convexity in the previous proof. For
the other case, take a contract satisfying (zdz — 1)g = —1 and a non-concave rate-this leads to a
new contradiction. O
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put-like region

Call-like region

Ficure 1. The contract in the example above. The horisontal axis is stock
price while the vertical is value of contract function. In the call-like option
region it is increasing in rate and in the put-like option region it is decreasing
in rate. Incidentally, in roughly the two same regions for this contract we have
two different monotonicity properties in volatility, increasing in the convex
region and decreasing in the concave region.

Remark 4.5. In the above two theorems we can generalize directly to the case with only con-
tinuous contract functions by an appropriate limiting procedure of contract functions using the
Hadamard property of the Black-Scholes equation. The appropriate conditions are then for the
contract functions g(z)/x increasing and g(x)/z decreasing respectively. The conditions on rates
pertaining to the two different cases remain the same. The assertions remain true for determin-
istic dividends as is seen by inspection of the proof.

Remark 4.6. The assertions of the theorem above are also true for the case with absorbing
boundary and contract functions satisfying (x0z — 1)g > 0, since then the contract is vanishing
at the origin then. For example, any bounded volatilities and rates would yield such a case.

Example 4.9. The contracts that we defined to be call-like in Definition 4.1 are if they posess
convex contract function also increasing in volatility if and only if the rate is spatially convez
in stock space. This is a generalization to level dependent rates of the usual properties of calls.
Likewise a put-like option with convex contract is increasing in volatility if and only if the rate
18 concave.

Example 4.10. Assume we have an option a, say, smooth contract function g satisfying (x0z —
1)g >0 in D C Ry U{0} and (8 — 1)g <0 in D¢ C Ry U{0}. Then also (zdy — 1)F >0 on
C C (R U{0}) x[0,T] and (28 —1)F <0 on C° C (R U{0}) x [0,T]. Thus

T
AF:/ E(elt 7(:X)ds Ap (30, — 1) F)du
t

This is greater than zero if Ar has support in C' and less than zero if Ar has support in C€. An
example of such a contract function is e.g. the difference between two calls g = (x — K1)t — (z —
Ko)t, with Ko > K1, since then (£0; —1)g = K10(x — K — 1) — K20(x — K2) assumes both signs,
and consequently the option is not monotone in rate. The same kind of argument shows that this
portfolio is not monotone in volatility either, since the contract is neither conver nor concave.

Example 4.11 (Credit Risk Migration). We note that if a European option option is issued by
a company and this company tries to value this option,then the rate it should use is the rate of
its debt. This in turn would be directly dependent on the value over debt ratio of the company.
Thus

Ox

T:T(m,t)
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where we can set the debt D(t) to be a deterministic function. The deterministic function 0
here is the amount of stocks issued by the company, and we only assume one type of stock to be
present. If we are dealing with a call, the rate function will be decreasing as we go to infinity in
stock space on financial grounds( an abundance of money in the market means that rates must
be low in order for some people to borrow at all) as well as taking into account the theorem on
monotonicity in volatility. Thus as the credit of the company changes,the discounted value of the
option contract decreases since there is a suppressing factor in the in the form of the exponential
e~ i rds under the expectation in the Feynman-Kac formula for the option. Hence this models
credit migration.

Example 4.12 (Knock-out Barrier options). Say we want to investigate a put-like or call-like
option that is knocked out in some rectangular domain D in the space-time of the Black-Scholes
PDE. By our monotonicity results we see that this is given by formally letting r(t,x) — oo in D
in the put-like case and r(t,z) — —oo in D in the call-like case. In practice this means having
sufficiently large bounds on the rate. Alternatively we can impose null boundary conditions and
restrict the domain of the Black-Scholes equation to the continuation region. This ideas above
are a generalization of Baaquie’s method for studying barrier options in the references. We then
directly obtain the following theorems:

Theorem 4.7 (Rate Monotonicity, Barrier options). Assume time and level dependent volatilities
and rates and contiuous contract functions as well as assuming Hypothesis 2.1,2.2 and 2.3. We
have that (x0r — 1)g < 0 in the sense of distributions is necessary and sufficient for a barrier
knock-out option to be decreasing in rates. Likewise (x0; — 1)g > 0 in the sense of distributions
is necessary and sufficient for an this option on a traded asset to be increasing in rates.

Theorem 4.8 (Volatility Monotonicity, Barrier options). A European Barrier knock-out option
with smooth contract on a traded asset satisfying Hypothesis 2.1,2.2 and 2.3 is monotone in rale
and increasing in volatility if and only if either (0 —1)g > 0, g is convex and the rate is convez in
the spatial variable or (x8; — 1)g < 0, g is conver and the rate is concave in the spatial variable.
In the first case it is increasing in rate and the latter it is decreasing in rate.

Proof. The proofs are completely analagous to the previos proofs. Since the knock-out boundary
inforces a restriction of the Black-Scholes equation domain with null boundary value data at the
boundary we are done since then Main Theorem II holds under this new domain for the Black-
Scholes operator. O

The possibly simplest other option to analyze is probably a ’mean’ contract. It is somewhat
interesting because it is as an exotic contract that may shed light on a special case of Asian
options. By the above results we get these two theorems:

Corollary 4.1. Assume that we have a ’Asian’ or ’mean’ contract on a traded asset g =
ﬁ ftT h(s, Xz s(w))ds, w € Q. Then assume h is convez in x and r is deterministic, r = r(t).
Then the pertaining option is increasing in volatility.

Proof. Using a Feynman-Kac representation, we can write

T
P(t,z) = TL_t/t T Lo b, 2)]du

T u T
:/ Tlelt 45| h(u, z)e™ Ju "5 du,
t

Thus we see that the mean option is a linear superposition of European contracts, all of them
monotone in volatility according to Corollary 3.1. Hence we are done. 0O
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Corollary 4.2. Assume that we are given an ’Asian’ or 'mean’ 'put’ contract on a traded asset
g = ﬁf; h(s, Xz s(w))ds, w € Q. Assume that (x0r — 1)he™ Ji r(s,)ds < 0 or (z0z —

T
1)he™ Ji r(s,@)ds > 0. Then the price of this option is decreasing in rate or increasing in rate
respectively for the two different cases.

Proof. Since we have already proved that a 'mean’ option is a superposition of European contracts
and we observe that the relevant contract functions in the superposition
T
U(u,z) = h(u,z)e” Ju r(s,@)ds
are satisfying (z0z —1)U(u, z) < 0 or (9 —1)U(u, z) > 0 we are done by using Theorem 4.1. [

Remark 4.7. For the general case of Asian options, such as the usual Asian put or call, we
do not necessarily expect monotonicity propeties to follow just as easily. Indeed monotonicity in
volatility is linked to a spatially bivariate diffusion, which may or may not be convezity preserving.
This has to be investigated further and cannot be concluded immediately.

In as far as American options we can prove the following theorems. For standard properties
of American options, optimal stopping problems and pertaining free boundary problems, see the
references. We remind the reader of the following definition:

Definition 4.2. The Frechet differential of a functional F(p) at p on a Banach space X is defined
as the linear functional DF' satisfying

F(p+h) — F(p) = DF(h) + o(h)
where p € X, h € X. Here o(h) = R(h)||h||x where R is a bounded functional in a neighbourhood

of the origin and ||-||x is the norm on X. If this differential exists we call the functional Frechet
differentiable.

Lemma 4.4. The American option functional is a Frechet differentiable functional w.r.t to the
optimal stopping time inside the continuation region up to the boundary.

Proof. Inside the continuation region up to the boundary we can write
F(a,t,7) — Fz,t,7 — h) = B(e” =17 (g(X;)) — E(g(X-_))

where we let the contributions at previous times ¢ < 7 — h cancel. Going in the limit h — 0
the expression vanishes, which is equivalent to optimality. Thus we are done proving Frechet
differentiability. O

Theorem 4.9 (Main theorem on American Options). We have that the American option F(t,z)
satisfying Hypothesis 2.1,2.2 and 2.3 is monotone in p if and only if

or a[,
(5 )F <0
op
or all t,x in where 18 the continuation region pertaining to parameter p = p(t, ). e
for all t,z in C, where C, is th tinuati j taining t t Th

two different lines above denote the two different cases respectively, increasing and decreasing.
The stopping time T is assumed to be a Frechet diffrentiable functional of p.

PDE proof. We have
0= (0 + L)F(p1)
0= (0 + L)F(p2)
on Cp, and C,, respectively. Hence on C,, NCyp, 7# 0 we can write by subtracting one equation

from the other
0= (0t + L(p1))FAF + ALF(p2)
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where we used the same notation as in the proofs of the previous main theorems for the differ-
ence operator A. Hence by a standard application of the Feynman-Kac theorem for arbitrary
boundaries, see Oksendal, Theorem 9.3.3, we obtain

T1INATY

x T1INAT2
AF = Eac’t(ef” r(s, S)ds(F(PLXTlAm) = F(p2, Xrynmy))) + Ew’t(/ ALF(p2)).
t

As p2 — p1 we have 7o — 71, hence

AF — f"lA"Z T(S,Xs)dSA A TiAT2 A
F=E(e) pDpT D7 F(t, 2, p1)|7; + o(Ap)) + E( L F(p2)) -
t SN——’
—0 —F(p1)

where D, F(t,z,p1)|7;, = D F(t,z,7[p1])|-; = 0 by optimality. Here we used the chain rule for
Frechet differentiable composite mappings, see Choquet-Bruhat et al., page 73.
Thus we ahve that the term that remains after a limiting procedure p2 — p1 is

T
0,8 = B[ I X5, LE (o).
t

since Since we assume

oF
—[Ap] >0
ap[ ol =
or
OF
——I[Ap] <0
Op
respectively
on Cp; NCp; = Cp, this is equivalent to
oL
5, (2P (p) 20
P
or, respectively,
oL
ER [Ap]F(p) <0
o
by the continuous property of the integrand in the expression for d,F. This concludes the

proof.

O

Theorem 4.10. Assume time and level dependent volatilities and rates. Assume sufficient condi-
tions for the free boundary value problem pertaining to an American option with contract function
g to be solvable. Then the American option is increasing in rates if and only if (x0z —1)g > 0
for all z in the continuation region and decreasing in rates if and only if (xd — 1)g < 0 for all
in the continuation region.

Proof. By (x8z —1)g > 0 or (29 — 1)g < 0 this implies (zdr — 1)F > 0 or (20, — 1)F < 0
by Lemma 4.1. Thus the American option is monotone in rate. Conversely, in the continuation
region the option has to satisfy (z8; —1)F(x) > 0 or (z0z —1)F < 0. Smooth fit proves then the
theorem for smooth contracts. By the Hadamard property we are then done for general continuous
functions. O

Theorem 4.11. Assume sufficient conditions for the free boundary problem associated with an
American option to be well defined and time and level dependent volatilities and rates. Then the
American option is increasing in volatility if and only if it is spatially convex in the continuation
region.

Proof. In view of Main Theorem 4.7 and the fact that 9,£ = 02292 we are done. O

Remark 4.8. As E.Ekstrom mentions in his Ph.D. Thesis this was known for deterministic
rates previously.
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Remark 4.9. Theorem 4.9 holds under time and level dependent dividends for which the free
boundary value problem is solvable as well. This is seen directly from the proof.

Theorem 4.12. Assume time and level dependent volatilities and rates and sufficient conditions
for the free boundary value problem pertaining to an American option to be solvable. Assume for
this American option that it is a call-like option, r convez, g convex. Then the American option
is actually FEuropean and monotonically increasing in both rate and volatility. Assume on the
other hand that it is a put-like option, r is concave and g is convex. Then the American option
is decreasing in rate and increasing in volatility.

Proof. In view of Theorem 4.6 for European options this is obvious. That it is European in the
first case follows from definiteness of the characteristic operator of the diffusion. O

5. MonoToNIcITY OF CREDIT RISKy DERIVATIVES

In this section we investigate intensity-based credit risk models. Intensity based models are
common in the litterature, see e.g. P.J. Schonbucher[16], Cossin et and Pirotte [15] or Duffie and
Singelton[14]. Usually these models are investigated via stochastic methods, something that we in
the present paper defer from doing, instead reducing these models to a partial differential equation
approach. After this reduction we investigate the monotonicity properties of this derived equation,
which is interesting to statistical arbitrage, superhedging and superreplication of claims when
either mis-specifying the volatility or rate of the underlying. We specify our model assumptions
again since we now explictly allow default of the underlying stock.

5.1. The Black-Scholes Model Revisited. We assume that the underlying stock or variable
follows a one-dimensional stochastic differential equation diffusion under a Kolmogorov measure.
Thus we have that

Hypothesis 5.1.

dX; = T’(t, Xt)det + O'(t, Xt)deBt
where Bt is Brownian motion, r is the short rate and o is the volatility of X: dedined through
o(t,2)2X2dt = Var(dX¢). The relevant probability space (Q,F, (Fs)i<s<T, P) is as follows: It
is the canonical Wiener space where Q is the space of continuous functions C([t, T],R), (F9) is

the filtration generated by the coordinate process Bi(w), w € Q, P is Wiener measure on ]—'%, F
is the P-completion of ]-'%,and for each s, Fs is FO completed with the null sets of F.

Here we have also

Hypothesis 5.2. e r(t,z) >0 and o(t,x) > X\ € Ry are Lipschitz.
e The diffusion term o(t,x)x is at most asymptotically linear in growth in the spatial
variable:

lo(t,z)] < M,M € R
e The rate r(t,z) is bounded.
The usual Black-Scholes equation, without default risk, is then
t, )22
%aﬁ +r(t, 2)2ds) F(t,x) = rF(t,z)
F(T,z) = g(=).

(0 +

on the domain ¢ € [0,T],z € R4, see Duffie(1996), section F, Chapter 5. We also assume the
following hypothesis:

Hypothesis 5.3. Here g(z) is at most of polynomial growth and is continuous. The solution is
required to be C%1 on the interior of the domain.
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5.2. Main Results on Credit Risk Superhedging. We first begin by deriving a parabolic
partial differential equation of second order for the price of a credit risk vulnerable option with
no recovery.

Theorem 5.1 (PDE for credit risk vulnerable options). The price F' of a credit risk vulnerable
option is given by

o(t,x)%x? ,
————0; +r(t,x)xdz)F(t,x) = (r(t,x) + f(t, x))F(t, x)

F(T,z) = g(x).

(0 +

on the domain t € [0,T),z € Ry. Here f is the default intensity of the obligor under the
martingale measure. Time is denoted by t and the value of the stock by x. If Hypothesis 6.2 and
6.3 are satisfied the solution to this equation exists and is unique.

Proof. If we use martingale methods to price the option the option value is given by
F(t,z) = B&) (e [0l (Xr))

We note that this directly yields a PDE via Dynkin’s formula. That the solution to the equation
in the theorem above exists and is unique under hypothesis 6.2 and 6.3 is well known from the
PDE litterature. See the appendix below. O

Remark 5.1. Incidentally, another equation can be derived in another interesting formalism.
Say we set two different driving Brownian motions B1, Ba and model the default intensity as a
Markov process;

dX = T’(t, Xt, ft, Zz)Xtdt + O'(t, Xt, ft, Zt)XtdBl,t
dfe = py(t, Xe, fr, Ze)dt + op(t, X¢, ft, Z¢)dBa s

dZy = fidt.
Then the PDE for the price of a credit risky option is

((9t+z

)

C..
21] azaj + rzdy +:ufaf +faz)F(t,{l',f,Z) :T(t,fl‘)F(t,CE,f,Z)

F(T,x,f,2) = ?Ty(a).

on the domain t € [0,T],x € Ry, Z € Ry, f€Ry. Herer =r(t,x, f,Z) and py = py(t,x, f, 2)
and also C11 = 022, C12 = C21 = oxogpr2, C22 = a?, and

E(B1B2)
P12 = —F/—/—-
E(B})E(B3)
Our first theorem is then
Theorem 5.2. It is necessary and sufficient for the option to be decreasing in the obligor intensity
that the option contract is non-negative.

Proof. Using Main Theorem II and the appendix we are done for the first statement. O

We thus turn to investigating when the option is increasing. Specifically, we concentrate on
the following issue:

Definition 5.1. A option is called call-like if t if (x0r — 1)F(t,x) > 0 and put-like if t if
(20 — 1)F(t,x) < 0. The contract is called call-like if satisfies the inequality (z8r — 1)g > 0
and oppositely put-like if (x0r — 1)g < 0. This is consistent with our previous work on European
options, for which an option is call-like if and only if it has call-like contract.

Definition 5.2. We define
2.2
L= %aﬁ +r(z0p — 1)
We note that the diffusion pertaining to our PDE is generated by L — f.

Theorem 5.3. A credit-risky option such that f is decreasing in stock space is call-like at all
times if the contract is call-like. Also, if f is increasing, then a decreasing put-like contract yields
a put-like option.



18 E. B. TORBRAND DHRIF

Proof. We begin by approximating the coefficients and contract by smooth functions. By the
methods in the previous sections combined with S.Janson and J.Tysk in the references we notice
that it suffices at time ¢t — At, At small, to check if the commutator [zd, — 1, L — f] = C' is positive
or negative when acting on the appropriate function F(¢,z) modulo the action of some second
degree elliptic operator on (xd; — 1)F (¢, z). We have

CF(t,z) = K(z0; — 1)F(t,z) — 0 (f)F (¢, x)

where IC is elliptic. We conclude that if F' is call-like at ¢ it will be call-like at ¢ — At if f is
decreasing. On the other hand if f is increasing and the option is put-like at time ¢ then it will
be put-like at some time ¢t — At before that. Using the Hadamard well-posedness theorem in the
appendix on Hadamard properties we are now done. O

Lemma 5.1. A positive option with call-like contract is spatially increasing if the intensity f is
spatially decreasing.

Proof. Since then xz0;F > F from Theorem 6.3 we directly obtain from F > 0 the desired
inequality. O

Theorem 5.4. A credit risk vulnerable option is increasing in rate if and only if it is call-like
and, assuming zero stock default probability( but of course non-zero obligor default intensity),
decreasing in rate if and only if it is put-like. Specifically, if the contract is call-like and the
intensity f is decreasing then it is increasing in rate. Also that it has put-like contract, zero
stock default probability and that the intensity f is increasing is sufficient for the option to be
decreasing in rate. Here we assume Hypothesis 6.1,6.2 and 6.3.

Proof. By Main Theorem II and the appendix this is imminent in view of the previous theorems
on call-like and put-like options. O

Theorem 5.5. If r is convex, g is call-like and convez, f is concave and decreasing, then F is
increasing in volatility. If r is deterministic on the other hand then it suffices that g is convez, f
is concave and decreasing for F' to be increasing in volatility. Here we assume Hypothesis 6.1,6.2
and 6.3.

Proof. By Main Theorem II we realise directly that it is necessary and sufficient that the option
be spatially convex in order for monotonicity in volatility to hold. We proceed following the
previous sections in the references as usual with a commutator argument by first approximating
the coefficients of the PDE with smooth coefficients to prove or derive sufficent conditions.

[202, L — fIF(t,2) = Ka20, 22 F (t, ) + (2202r) (28, — 1)F(t, )
_[anga .ﬂF(ta Z‘)

Since —[2202, fIF(t,x) = — (2202 f + 2220, f82)F(t,x) we are done in view of our assumptions
for the smooth case, since F' must be increasing at all times by Lemma 5.1. Using the Hadamard
well-posedness Theorem in the appendix we also have the result for continuous contracts and
coefficients of the PDE. O

Example 5.1. Consider the standard Black-Scholes model with constant default intensity for
monomial contract functions g(z) = %, o > 1. Then the value of the defaultable contract is
given by

F = o~ At (T ala—1)+r(a—1)At ya
This has the required properties, it is decreasing in f, increasing(non-decreasing) in r when o > 1
which ezactly corresponds to call-like cases and increasing in the wvolatiltiy in the same cases.
Specifically the vega is

2
V= o’a(a _ 1)Ate—fAte(%Q(a71)+r(a71))Atxoe >0
which demonstrates our assertion concerning montonicity in volatility.

Example 5.2. Let r and o be positive constants. Consider the CEV models
dX =rXdt+o0cX"dB
Then as At +— 0
OrF ~ At(z0y — 1)F
as is seen by the usual generator of the diffusion. When v > 1/2 we have zero stock default
probability( but non-zero obligor default probability is assumed), hence the above directly implies

that the option is monotone in rate iff it is call-like or put-like at all times. We also have for the
case of possible default v < 1/2 that the option is increasing in rates if the option is call-like.
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Remark 5.2. We note that monotonicity in volatility requiers a concave default intensity. This
tells us that one in practice has to impose a roof for the values of stocks where the default
intensity becomes zero and hence restrict the Black-Scholes equation to a subinterval of the real
half-line when we are considering general time and level models of credit risk default intensity.
Alternatively we cannot require monotonicity in volatility and perhaps only montonicity in rate.

6. APPENDIX: HADAMARD WELL-POSEDNESS AND FRECHET DIFFERENTIABILITY

The Black-Scholes equation satisfies Hadamard well-posedness( under some assumptions). Here
is a simple proof:
Proof.

T
|F(t,z) = Fu(t,z)| = |[B" (e Jo "(X) (g(X71) = gn(X1)))]

< B (e X g(Xr) — gu(X1)])

< B (e I XD essuplg(Xr) — ga(Xr1)]

= B(t,T,)|lg(z) — gn(z)|loo
which was what we wanted to prove. That bond prices are finite is trivial since they are bounded
by 1 when the rate is nonnegative. If we allow negative rates, which is something that occurs
in several IR models, we must also assume finite bond prices as an additional and actually quite

realistic assumption. When considering options on non-traded stochastic processes we always
assume finite bond prices.

O

There is also another Hadamard property to be proved, namely the one under successive
approximation of coefficients in the Black-Scholes equation. By Frechet differentiability of the
Black-Scholes functional this is however obvious, since continouity must follow from differentia-
bility. But if we do not assume Frechet differentiability, we must have sufficient conditions for
Hadamard continuity to hold in order for our theorems to be valid for the case with continuous
coefficients. Here is a theorem, Theorem A.12, from the article by Svante Jansson and Johan
Tysk(2003) that gives us what we are looking for.

Theorem 6.1 (Hadamard Property). Suppose M™, m =1,2,... is a sequence of Black-Scholes
differential operators on [0,T] X Ry such that:
e The Black-Scholes operator is parabolic(i.e the gemerator is elliptic) everywhere, i.e
o(t,z) > 0 everywhere.
e The drift satisfies | — oA| < B(1 + 1/z), the rate is bounded by B, and the volatiltiy
satisfies |02| < B(1+1/2?), B € R.
The rate v, drift (n — Ao)z and variance o?x> are HAqlder(a).
o M™ tends to M in the sense that the coefficient tend to some continuous coefficients
pointwise.
e The contract function is at most of polynomial growth.
Then the solutions to the various PDE’s converges in the sense of uniform convergence on compact
subsets to the solution of MF =0 .

In the section on credit risk monotonicity we use the following version of the above theorem:

Theorem 6.2 (Hadamard Property, Credit Risk Section). Suppose M™, m = 1,2,... is a se-
quence of Black-Scholes differential operators on [0,T] x Ry such that:
e The Black-Scholes operator is parabolic(i.e the gemerator is elliptic) everywhere, i.e
o(t,z) > 0 everywhere.
e The drift satisfies |r| < B(1+1/z), the function r+ f is bounded by B, and the volatiltiy
satisfies |0%| < B(1+1/22%), B € R.
That r + f, drift rx and variance o?x? are HAlder(a).
o M™ tends to M in the sense that the coefficient tend to some continuous coefficients
pointwise.
e The contract function is at most of polynomial growth.
Then the solutions to the various PDE’s converges in the sense of uniform convergence on compact
subsets to the solution of MF =0 .

Basically we just need the HAqlder property of the coefficients to hold under as well as our
more restrictive Hypothesis 2.1,2.2 and 2.3 for Hadamard continuity to hold. That a bivariate
function f is Holder(«) in z means that

[f(t, @) — f(ty)] < Krlo —y|*

where K7 is a constant depending on the spatial interval I.



20

[1

[2]
[3]

[4]
[6]

E. B. TORBRAND DHRIF

REFERENCES

BERGMAN, Y. Z., GRUNDY, B. D., WIENER, Z; General Properties of Option Prices, Journal of Finance,
Vol. LI, No.5(1996), 1573-1609.

BJORK, T.; Arbitrage Theory in Continuous Time, Oxford University Press, 1998.

BLACK, F., SCHOLES, M.; The Pricing of Options and Corporate Liabilities; J. Political Economy 81
(1973), 637-654.

CHOQUET-BRUHAT, Y., DeWITT-MORETTE, C.; Analysis, Manifolds and Physics, North-Holland, 1977.
COSSIN, D. and PIROTTE, H.; Advanced Credit Risk Analysis, John Wiley and Sons, 2001.

DUFFIE, D. SINGELTON, K.; Credit Risk, Princeton Series in Finance, Princeton University Press, 2003.



